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Abstract

The thesis proposes a solution to the problem of recognizing and modeling risk trans-

mission contained in documents describing a system’s operation or failure. Relationships

are determined in the context of entire documents and go beyond the currently dominant

approach of identifying relationships within a single sentence and using classifiers trained

on collected dedicated training examples.

The problem being addressed is significant because information about the flow of

threats can create complex interactions between system elements described in such a way

that they may be scattered throughout the document and even between sources. There is

generally a lack of dedicated training sets for classifiers, and existing solutions are limited

to selected areas, such as railways, or description formats, such as HAZOP or FMEA.

The proposed solution involves a gradual decomposition of descriptions. The examined

text is decomposed into a Semantic Frames Graph (SFG) in the first step. In the second

step, the pattern of threat propagation relationships is used to recognize propagation.

Recognized propagations are stored in an Intermediate Relationship Graph (IRG). In the

final step, propagations are aggregated into the form of an Asset-Vulnerability-Hazard (A-V-

H) graph, which allows for a network analysis of the risk contained in the description of the

operation of a given system.

The proposed approach allows for modeling risk propagation without needing a dedi-

cated relationship detection mechanism, as this method is based on verbalizing the rela-

tionship pattern. Another reason for eliminating dedicated classification is the extension

of pattern analysis to analyze the dialog coherence in the path between nodes in the SFG

graph. The detection results obtained by combining both methods are verified using cur-

rent language models (Large Language Models such as chatGPT) and prompt engineering.

The threshold above which relationships are accepted is a solution to the multi-criteria

optimization task.

Overall, this work presents a new method for detecting relationships and its applica-

tion in risk analysis. It also explores the potential of semantic pattern methods, dialogic

coherence, and prompt engineering in constructing a network risk model, which facilitates

modeling complex threat propagation dependencies.
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Streszczenie

Rozprawa proponuje rozwiązanie dla problemu rozpoznawania i modelowania trans-

misji ryzyka zawartego w dokumentach opisujących działanie systemu lub opisujących

jego awarię. Relacje wyznaczane są w konteście całych dokumentów i wykraczają poza aktu-

alnie dominujące podejście wyznaczania relacji w ramach jednego zdania oraz przy użyciu

klasyfikatorów wytrenowanych na zebranych dedykowanych przykładach trenujących.

Rozwiązywany problem jest istotny jako, że informacje o przeływie zagrożenia mogą

tworzyć skomplikowane interakcje pomiędzy elementami systemu opisanymi w taki sposób,

że mogą być rozproszone po całym dokumencie a nawet pomiędzy źródłami i na ogół

brakuje dedykowanych zbiorów trenujących klasyfikatory a istniejące rozwiązania są ogranic-

zone do wybranych obszarów np.: kolei, lub formatów opisow np.: HAZOP lub FMEA.

Proponowane rozwiązanie zakłada stopniową dekopmozycję opisów. W pierwszym

kroku badany tekst dekomponowany jest do postaci Grafu Ramek Semantycznych (ang.

Semarntic Frames Graph, SFG). W drugim kroku, wzorzec relacji propagacji zagrożenia

używany jest do rozpoznania propagacji. Rozpoznane propagacje zapisywane są w grafie

Pośrednich Relacji Semantycznych (ang. Intermediate Relathionship Graph, IRG). W os-

tatnim kroku, propagacje są agregowane do postaci grafu Zasób-Podatność-Zagrożenie

(ZPZ) (ang. Asset-Vulnerability-Hazard, A-V-H), który pozwala na sieciową analizę ryzyka

zawartego w opisie dzialania danego systemu.

Zaproponowane podejście pozwala na modelowanie propagacji ryzyka bez konieczności

stosowanie dedykowanego mechanizmu detekcji relacji jako, że metoda ta opiera sie na

werbalizacji wzorca relacji (ang. pattern verbalization). Drugim powodem, który pozwana

na eliminację dedykowanej klasyfikacji jest rozszerzenie analizy wzorca o analizę spójnościa

dialogowej w scieżce pomiedzy węzłami w grafie SFG. Wyniki detekcji uzyskanych poprzez

zestawienie obu metod weryfikowane są poprzez wykorzystanie aktuanych językowch

modeli generatywnych (Large Language Models np.: chatGPT) oraz inżynierii podpowiedzi

(ang. prompt engineering). Próg powyżej którego relacje są akceptowane jest rozwiązaniem

zadania optymalizacji wielokryterialnej.

Ogólnie nieniejsza praca przedstawia nową metodą detekcji relacji i jej zastosowanie w

obszarze analizy ryzyka. Przedstawia potencjał metody wzorców semantycznych, spójności

dialogowej oraz inżynierii podpowiedzi w konstruowaniu sieciowego modelu ryzyka, który

ułatwia modelowanie złożonych zależności propagacji zagrożenia.
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Chapter 1

Introduction

Cambridge English Dictionary defines the adjective "hidden" as «not easy to find».

Although "not easy" is connected with "difficult", in the domain of risk analysis, it should

instead refer to the fact of not being directly detectable. The «hidden» nature of risk relations

results from human language’s flexibility in expressing the descriptions of risk. In addition,

the semantics’ of risk is characterized by extreme contextuality.

The «hidden» aspect of risk interactions within a system often presents challenges in

modeling and analysis. At the heart of this complexity lies the intricate interplay between

various factors, each exerting its influence and contributing to the overall risk propagation.

These interactions are seldom linear or predictable, making them difficult to capture within

traditional risk models. Moreover, the interconnected nature of modern systems introduces

a web of dependencies and feedback loops, amplifying the potential for cascading effects

and undetected consequences. Despite these challenges, understanding and effectively

managing complex risk interactions are essential for safeguarding against systemic failures

and disruptions. This requires a holistic approach that integrates diverse perspectives,

leverages advanced modeling techniques, and embraces uncertainty to effectively uncover

hidden vulnerabilities and mitigate emerging threats. Through such combined approaches,

we can navigate the intricate web of risk interactions and effectively safeguard against

hazards.

Linguistic aspects of relationship extraction focus on identifying and categorizing se-

mantic connections between entities within and across sentences, leveraging both syntactic

and semantic analyses. Intra-sentence relations involve identifying relationships within

a single sentence, which relies heavily on syntactic parsing to understand grammatical

structures and dependencies, such as subject-object relationships, as in "The scientist

discovered a new element." Semantic roles further clarify these relationships by specifying

the function of each entity, like identifying "the scientist" as the agent and "a new element"

as the object. Such an approach simplifies the detection as the scope of analysis is limited

to the sentence. Inter-sentence relations extend this task to link entities across multiple

sentences, requiring discourse analysis to resolve co-references and maintain entity consis-
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tency. For example, in the text "Marie Curie conducted pioneering research on radioactivity.

She was the first woman to win a Nobel Prize," co-reference resolution identifies "She" as

referring to "Marie Curie," thus connecting the two sentences and establishing the rela-

tion between "Marie Curie" and "Nobel Prize". This comprehensive approach, integrating

intra- and inter-sentence analyses, ensures a robust understanding of entity relationships,

essential for applications in information retrieval and knowledge base construction.

Formulating the relationship extraction task involves defining it in a structured manner,

incorporating the identification of entities and the semantic relations between them within

a given text.

1. Input:

- A corpus of text T , which is a collection of sentences S = {s1, s2, . . . , sn}.

- Each sentence si consists of a sequence of words {w1, w2, . . . , wm}.

2. Named Entity Recognition (NER):

Identify and classify named entities within the text. The output is a set of entities E =
{e1,e2, . . . ,ek }, where each entity e is associated with a type (e.g., Person, Organization,

Location).

3. Candidate Relation Identification

Generate pairs of entities (ei ,e j ) from the set E . Each pair is considered a candidate

for potential relationships.

4. Feature Extraction:

Extract linguistic features from the text to help determine the relationship between

entities. These features can include:

- Syntactic features: Dependency paths, part-of-speech tags, parse trees.

- Semantic features: Word embeddings, semantic roles, named entity types.

- Contextual features: Surrounding words, co-reference chains, sentence position

5. Relation Classification

For each candidate pair (ei ,e j ), classify the semantic relation r between the entities.

This is often treated as a multi-class classification problem where the output is a

predefined set of relation types R = {r1,r2, . . . ,rl }, including a "no relation" class if

applicable.

6. Output

A set of triples {(ei ,r,e j )} where each triple represents a relationship r between entities

2



ei and e j .

By structuring the relationship extraction task, we can systematically identify and clas-

sify relationships between entities within and across sentences, leveraging various linguistic

features and techniques. The approach is successful in scenarios where the relations are ex-

pressed explicitly. Consider the example: s = "Marie Curie discovered radium in 1898.". In

this case, the approach would address the detection of "radium discovery" is the following

manner:

1. Named Entities

- "Marie Curie" (Person) - "radium" (Substance)

2. Candidate Relation

("Marie Curie", "radium")

3. Feature Extraction

- Syntactic dependency: "Marie Curie" (subject) -> "discovered" (verb) -> "radium"

(object) - Semantic roles: "Marie Curie" (Agent), "radium" (Object)

4. Relation Classification

Classify the relation between "Marie Curie" and "radium" as "discovered"

5. Output The relationship triple: ("Marie Curie", "discovered", "radium").

The nature of risk-related relations challenges the standard approach to RE in two ways.

First, these relations are implicit, meaning there is no direct mention of specific risk-related

relations in the text. Consider the sentence: "ATF is a type of aviation fuel designed for use

in aircraft-powered gas-turbine engines. If these supercooled droplets collide with a surface,

they can freeze and may result in blocked fuel inlet pipes". An average human reader easily

spots the impact of a droplet on the engine even though there is no direct mention of it.

This case contrasts with Marie Curie’s radium discovery in the previous example.

Second, the named entities should be risk-specific, which means that instead of gen-

eral categories "Person," "Organization," or "Location," we are more interested in related

categories such as "Asset," "Hazard," or "Barrier" Consider a sample sentence: "A hunter

shot a raging bear". Both "a hunter" and "a bear" are Threats depending on the context.

For an object "bear, "hunter" is a Threat or Hazard as he shot it eventually; however, for an

object ’hunter," "bear" is a Threat therefore, it was shot.

Contextuality is even more visible if we expand the scope. Let’s consider another sen-

tence: "A hunter shot a raging bear attacking a woman". Within this single sentence, object

3



"hunter" should be assigned two roles simultaneously: Threat from the bear’s perspective

and Savior or Barrier from the woman’s. Therefore, which concept should represent the

word "hunter" in this sentence?

In the risk domain, such contextual situations are not uncommon and require a con-

textual approach to detect them correctly. For example, the contextual role of the package

(Fig. 1.1) depends on whether we consider a human underneath - in this case, it will belong

to class Hazard. However, given that the package is valuable, it will be considered as Asset,

which Vaulnerability would be a line carrying it and Hazard an event of the line snapping.

The contextuality challenges a classical knowledge graph construction as it relies on

the notion of Concept. The hierarchy of concepts and the relations between them is the

foundation of the representation - the model of the domain of interest. That organized

structure forms an Ontology a foundation for Inference. In the classical approach, a concept

is a component of human thought and is the thinking unit that refers to objective things

and their peculiar properties. A concept’s formation is a procedure with the direction “from

special to general”. Considering various objects that are “special” cases, one determines

a “general” set of properties that form the concept. This implies that we can define the

concepts only through their properties and how linguistic expressions of concepts exist

within the narrative. As with the word “apple,” we can associate the information related

to its shape, color, taste, and the context in which it usually appears in any narrative. We

can observe that other words, such as "peach" and "banana," share the same linguistic

properties; therefore, they are similar. All of these allow classifying "apple", "peach", and

"banana" to the concept of "fruit".

Using a similar approach to identifying, for example, the Hazard concept would require

enumerating its features, effects, and linguistic expressions to detect them in the parsed

descriptions. Due to the unmanageable number of combinations, such an approach is

impossible as the concept of hazard manifests itself in various domains differently. For

example, in the medical domain, the hazard manifests through adverse drug effects, impact

on the organs, or general deterioration of patients’ medical conditions. In the financial

realm, risk will be manifested through capital loss. In software engineering, through a data

breach or unexpected system malfunction.

The thesis aims to extract risk-related interactions from the text. It uses a specific risk

structure, a triple Asset-Vulnerability-Threst [1], that organizes and constrains how the

interactions are identified. The approach proposed relaxes the problem of direct detection

of risk-related concepts and formulates the methodology, which allows constructing the

4



1 . 1 . T H E S I S S T R U C T U R E

Figure 1.1: Risk Contextuality

comprehensive representation of risk interactions in the form of a specific Knowledge

Graph called Asset-Vulnerability-Hazard graph (pol. graf Zasób-Podatość-Zagrożenie) [1].

1.1 Thesis structure

The thesis is structured as follows:

• Chapter 1 – Introduction

This chapter explains the motivations behind the research. It also outlines challenges

in Risk Analysis and requirements for a solution to construct a comprehensive risk

representation.

• Chapter 2 – Related Work

The chapter summarizes related work in network representation of risk and discusses

the limitations of current methods from the representation and text processing per-

spective.

• Chapter 2 – Relevant Natural Language Processing Techniques

The chapter discusses relevant Natural Language Processing techniques used to con-

struct the network representation of risk. It identifies the bottlenecks in the general

Knowledge Acquisition Pipeline, which is used to parse and transform the textual

representation of risk, especially in entity recognition and relationship extraction

areas.

• Chapter 4 – Proposed Solution

This chapter discusses a proposed solution for a risk modeling system. It explains

5



1 . 2 . M O T I V A T I O N S

the main challenge in the naive approach to solving required triple identification

based on entity recognition. It provides a solution via analysis of risk propagation and

describes the main solution concepts: Semantic Frame Graphs, Dialog Coherence,

and Intermediate Relationship Graphs. It formulates a multi-objective optimization

to establish the threshold on dialog coherence scores on verbalizing the risk-relevant

relationship templates.

• Chapter 5 - Results

This chapter presents the results, provides insights into how current LLM is used in

validating relations, and explains how the solution can be used in domains other than

risk.

• Chapter 6 - Conclusions

This chapter concludes the dissertation and outlines future work.

1.2 Motivations

1.2.1 Risk Analysis

Critical factors support the continuous improvement of Risk Analysis and Risk Man-

agement methods. First, as we are faced with a “fast pace of technological change,” “new

types of hazards,” and “increasing complexity and coupling.” [2], it is necessary due to

the growing complexity of new systems, objects, and processes in which risk-related in-

teractions are increasingly difficult to find and model. Second, risk management must

be an integral part of the overall management process, describing risk interactions in a

meaningful and standardized way across system elements to allow for informed decisions

on risk-preventing strategies. Third, legal regulations already impose risk management

strategies on corporations, i.e., Seveso Directives.

However, few structured data sources collect risk interaction comprehensively, even

though collecting, analyzing, and storing data relating to accidents and incidents, given

the regulations, is mandatory in some industries. There are just a few examples of official

government-managed semi-structured repositories that are textual and, therefore, do not

allow systematic analysis without additional transformations:

• Nuclear Power Industry. In this industry, the data collection is rooted in the Interna-

tional Convention on Nuclear Safety. According to this convention, each contracting

party commits to taking the appropriate steps to ensure that:
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«incidents significant to safety are reported in a timely manner by the

holder of the relevant license to the regulatory body; [and that] programs

to collect and analyze operating experience are established, the results

obtained and the conclusions drawn are acted upon and that existing

mechanisms are used to share important experience with international

bodies and with other operating organizations and regulatory bodies» [3]

• Aviation. According to EU directive 2003/42/EC on "Occurrence reporting in civil

aviation" data related to all civil aviation incidents and accidents must be collected,

reported, and analyzed. The organization European Co-ordination Centre for Ac-

cident and Incident Reporting Systems (ECCAIRS) has been established to «assist

national and European transport entities in collecting, sharing and analyzing their

safety information to improve public transport safety.»

• Process industries covered by Seveso II Directive. Companies in Europe that comply

with the Seveso II directive must collect and report data in a specified format to the

national authorities and the eMARS database.

Understanding the connections between components, hazards, and consequences

in the system’s domain is a key element in reasoning about the propagation of hazards

contained in textual risk repositories. Methodologies exist to construct representations

focusing on specific risk modeling approaches, namely qualitative and quantitative risk

assessment methods.

In reality, however, a limited model is usually constructed through an iterative, time-

consuming process involving subject matter experts with a focus on a selected area of

operation of the system [4], [5]. This leads to a situation where most of the risk-related data

is written down and stored in various descriptions, either of the failure events, i.e., railway

accident report [6], or "near-misses" reports in industrial cases [7] or as descriptions of

safety operations of the given system. Such representation restricts the possibility of analyz-

ing the risk interactions comprehensively, as documents need to be read and interpreted by

experts.

This defines the first set of requirements for building comprehensive risk representation.

Such a system shall be able to consume information written in natural language, normalize

it, and store it in a format allowing standardized analysis.

Another critical factor in risk prevention is the subjective nature of risk itself. It is

influenced by a broad set of phenomena beyond the mere technical conception of risk as a

combination of accident scenarios, probabilities, and adverse outcomes. Excessive reliance
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on subject matter experts is a risk of the risk analysis methods.

The cognition bias of experts performing the risk analysis, regardless of methodology,

given the system’s complexity and time or budget constraints, is responsible for underes-

timating or even omitting scenarios that lead to a catastrophe. An excellent example of

such accidents would be "Herald of Free Enterprise" or "Jan Heweliusz" - roll-on roll-off car

and passenger ferries capsizing. In the first case, missing bow door indicators allowed the

ship to depart with the bow doors unlocked. In the second, an inefficient weight-balancing

mechanism was inadequate for weather conditions.

Therefore, the second set of requirements is to mitigate subjective risk perception. The

system shall be constructed so that a clear template related to risk propagation should be

used against the set of documents while searching for risk relations. The role of experts

shall be switched from performing complete risk analysis manually to collecting relevant

documentation and validating the results of risk detection. The system shall automatically

ingest and transform the documents to normalized representation incrementally so the

risk representation is augmented when new facts arrive.

The final requirement relates to representing risk interaction in the modeled system.

The natural candidate would be the network model of risk interaction. Its advantage is

the simplicity of interpretation, which means that the graphical form is understandable

also for those not involved in construction. In the case of risk assessment, the undoubted

advantage of the network model is the ability to visualize the links between the effects

of threats, which is an initial step towards more complex quantitative risk estimation as

Bayes Nets [1]. Defining dependencies directly in the Bayesian network is troublesome

as it requires the decomposition of risk interaction and then estimating conditional risk

probabilities [1]. Therefore, developing methods for building network security models may

prove to be a foundation for cost-effective ways of security analysis.

1.2.2 Risk - Asset - Vulnerability Dilemma

The contextuality of risk means that the same element can belong to all classes. For

example, "engine" is an asset impacted by the "droplet" risk in "fuel". However, the "air-

plane" is an Asset too that is impacted by the "engine" as the its flying capability relies on it.

In this case, "engine" is the airplane’s Vulnerability. Therefore, "engine" must be assigned

two concepts simultaneously.

The current class detection, Named Entity Recognition (NER), in NLP pipelines relies

on a text span classification approach, in which both span and the class are detected [8].

8



1 . 2 . M O T I V A T I O N S

The approach is limited in two ways. First, it is limited by the selection of span sizes to

capture the interaction, and second, by lack of referring between entities. In the second

case, the A-V-T triple would require the classifier to assign multiple classes to the same span,

denoting either entity depending on which element is considered an Asset. This means that

variant entity classification is required in a single context, which is impossible in current

NER solutions.

1.2.3 Large Language Models

Late rapid progress on Large Language Models (LLMs) was initiated with the publica-

tion of the Transformer architecture [9]. Two elements are behind LLMs’ success. First is the

attention mechanism, which allows weighted access to the fragments of the context. The

other is the model’s architecture, which enables easy expansion of the model’s parameter

space.

With increased computing and training resources, LLMs have demonstrated increased

semantic capabilities, making perfect use of both the attention mechanism and its scalable

architecture. Since Alan Turing’s seminal paper on "Computing Machinery and Intelli-

gence" and his famous Turing Test, we have progressed to the state of the art, which sparks

ongoing discussions on threats posed by the uncontrolled growth of capabilities of such

models [10]. Such discussions are academic no more, and on 31st October 2023, the UK

Prime Minister, Mr. Rishi Sunak, hosted the first global summit on the risks associated with

artificial intelligence.

The capabilities of the current general language models, called foundation models [11],

are, in fact, staggering. However, they are limited in several aspects.

First, the performance is a function of their parameters [12]. A perfect example ex-

plaining the improvement with the increase of model parameters is a question answering

where the zero-shot setting comes close to the current state-of-the-art performance of the

fine-tuned models [13] (Fig. 1.2).

Increased parameter space comes with computing requirements. The scaling is visible

if we compare models’ training compute power utilization [13] (Fig. 1.3).

Lastly, significant parameter space requires a significant amount of data. OpenAI’s

GPT-3 model was trained on a filtered Common Crawl dataset, WebText, two internet-

based books corpora, and English Wikipedia. All three elements, significant parameter

space, compute resources, and abundant training data, enable identifying representations

of the knowledge encoded in corpora at scale. Still, the model learns from the data it
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Figure 1.2: Question Answering Performance [13]

Figure 1.3: Model Training Compute Cost Comparison [13]
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used; Therefore, OpenAI had to undertake a deliberate training strategy to counter data

contamination [13].

Due to data requirements, only a few areas have enough textual resources to train the

dedicated LLMs. In the judicial domain, LLMs encode unstructured textual resources that

comprise the legal system. The reason why specific training is required is that the nature of

the language in the domain deviates from the ’common’ language used daily. A very good

example of such a case is the word "consideration", which in general English means "the

act of thinking about something carefully" and in legal terms, it is "to describe the benefit

each party to a contract receives". This is often payment in exchange for goods or services.

In the judicial domain, LLMs can perform, among others, the following tasks [14]:

• they can quickly extract key points from legal documents, combine them with the

judgment outcomes, and generate concise and accurate case summaries,

• they can generate a draft legal document that complies with legal standards,

• through interactive Q&A sessions with users, they can provide convenient and effi-

cient legal consultation services, while also reducing the workload of professional

lawyers,

• they can summarize and extract the key features of a given case, which can contain

significant legal documentation.

In the financial area, LLMs are trained in specialized financial textual resources to

perform [15]:

• Regulatory Compliance to assists financial institutions in analyzing and interpreting

complex regulatory documents, compliance requirements, and legal agreements.

• Investment Research and Due Diligence to help analyze vast amounts of financial

reports, company filings, analyst research, and news articles to identify investment

opportunities and conduct due diligence on potential investments.

By connecting historical textual data and financial data, LLMs can perform rudiment finan-

cial analysis such as:

• Market Analysis and Forecasting in which LLMs analyze historical financial data,

market trends, and economic indicators to generate insights and forecasts,

• Fraud Detection in which LLMs can assist in detecting fraudulent activities, suspi-

cious transactions, and potential money laundering activities by analyzing textual

data such as transaction records, customer communications, and public records.

Last but not least is the medical domain. It has a portfolio of dedicated language models,

including MedPalm and MedPlam2 [16], which encode medical knowledge and have been
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developed specifically for medical question-answering tasks. However, potential use cases

for such models are more advanced and apply to areas such as:

• Clinical Trial Matching and Recruitment where LLMs can help match patients, based

on their medical history, to relevant clinical trials,

• Healthcare Chatbots and Virtual Assistants where the chatbots and virtual assistants

can be used to interact with patients to schedule appointments, answer medical

questions, provide medication reminders, and offer health coaching,

• Integration of Electronic Health Records (EHR) where LLMs can improve the effi-

ciency and accuracy of analysis of EHR by interpreting and extracting relevant infor-

mation from unstructured clinical notes, physician narratives, and patient histories.

These models share common traits: they are significantly founded and have enough

good-quality data for training. The risk domain has incomparably smaller data sets for

several reasons:

• textual resources are scarce as once an adverse event occurs, corrective measures are

taken to prevent it from reoccurring,

• subjects analyzed are not as massive compared to, for example, human health data

in medicine, as risk analysis focuses on dedicated areas,

• security descriptions are usually explicitly prepared by subject matter experts (SMEs)

during the dedicated analysis tasks performed regularly but rarely, specifically for

selected critical infrastructure elements, i.e., power plants. Therefore, their coverage

is usually limited.

On the other hand, risk prevention is a more challenging task as, for example, given the

current knowledge, we would like to predict possible future risk events to prevent them

before they happen. Hence, taking the medical domain example, given current diseases

and how we treat them, we would like to predict future diseases and design their treatment

before before anybody gets sick.

1.2.4 Validation and Explainablility

Explainable artificial intelligence (XAI) is a set of processes and methods that allows

human users to comprehend and trust the results and output created by machine learn-

ing algorithms. From a risk analysis perspective, explainability is essential as a network

representation of risk, which in many cases contains aggregations, must be constructed

from descriptions in a verifiable way. For example, sentences: "Astra Zeneca was first to

develop a Covid19 vaccine. COVID-19 was a serious threat to global health in 2020 and
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2021" may generate a relationship between Astra Zeneca and threat to global health through

Covid19. Therefore, a situation must be reconstructed from the original text to validate the

relationship [17]. Explainability is even more critical in the case of distributed evidence,

as collecting and linking them from various sources is even more challenging. From the

specific NLP case perspective, for example, NLI, explainability means that not only decision:

entailment, contradiction, or neutral is provided, but also sentences or text spans that justify

it [18].

Validation is a method for evaluating the model’s performance. In a basic approach,

validation is performed through a dedicated data set to validate the classifier. Validation is

meant to increase the model’s trustworthiness and, in the risk scenario, the trustworthiness

of risk-related detection. Validation is usually performed based on evaluating the classifier’s

performance metrics, such as Accuracy, Precision, Recall, and Sensitivity. Unfortunately,

many areas, including risk analysis, lack extensive dedicated training or validation sets,

and relying on ’some validation’ sets designed for different cases may falsely increase

the trustworthiness. The reason for this is that the meanings of words across domains

differ. An example of such a case is the usage of the word "boot". It means footwear and a

process of restarting electronic equipment. Validating a system on a dataset with the first

"boot" meaning can harm understanding the system operating in the electronic equipment

domain.

1.2.5 Goal of Reasearch

Natural language processing is a rapidly changing domain nowadays. Although the

progress is exceptional, we are still far from the position to have a portfolio of components

to "plug them in" to build a dedicated risk analysis system. Therefore, several elements are

driving the research described in the presented thesis:

• First, as it is financially prohibitive, the research shall answer if it is possible to con-

struct a risk detection system without creating a dedicated LLM for Risk Analysis.

• Second, it shall evaluate available trained and language-specialized classifiers and

construct the pipeline to identify risk relations without a dedicated training set.

• Third, a validation method shall be provided.

• Finally, the pipeline shall produce the A-V-H graph, a chosen network model of risk

interaction.

Overall, the pipeline shall rely on the Large Language Model’s capabilities as much as

possible, relaxing the problem of missing training examples and providing means to verify
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the facts supporting the risk relations identified.
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Chapter 2

Related Work

Drawing lessons from historical accidents and proactively identifying and even predict-

ing the potential risks of various hazards improves the safety assurance level of any system.

The thesis focuses on two aspects of this endeavor: first, consuming the risk information

from natural language resources, and second, representing the risk interactions as a labeled

property graph.

The system’s complexity is its natural vulnerability. Normal Accident Theory (NAT)

explains that some accidents are inevitable because of their complexity. The NAT approach,

proposed after the nuclear accident of Three Mile Island (1979), segments systems into two

broad categories: linear and non-linear [19]. In linear systems, it is possible to specifically

isolate the effect and understand the impact of hazardous events. In contrast, non-linear

systems are characterized by their tight coupling and interactive complexity. In the non-

linear system, we encounter normal accidents in which multiple failures form unforeseen

interactions that make accidents very difficult or impossible (with our current understand-

ing of the system) to diagnose. Although the NAT approach has been criticized especially

for having imprecise definitions and lacking criteria for quantifying system complexity [20],

it marked a shift in accident analysis to "focus on the systems’ properties and structure,

rather than on the errors that owners, designers, and operators make in running them"

[19].

In line with the NAT approach, although some of the methods were introduced be-

fore NAT, current risk analysis methods are based primarily on the decomposition of the

structure of system elements. The network representation of the system models the impact

of hazards and the type of applied safeguards. Depending on the degree of mathematical

formalism and available information, the model may represent a general qualitative risk

assessment based on, for example, the identification of causal links between failure and its

effect.

The first method developed on this basis was the Failure Mode and Effect Analysis

(FMEA) method) [21], which systematically inspects all possible single failure modes of

individual elements of the system. Unfortunately, the quality of the FMEA model is limited
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by the experience of experts and represents a de facto subjective assessment of the security

system. The FMEA method is also very labor-intensive. It requires the identification of all

potential events and does not allow for a comprehensive analysis of possible combina-

tions of these hazards [5]. Therefore, the comprehensiveness and objectivity of FMEA are

inevitably limited.

A systematic approach and, consequently, one that reduces subjectivity in modeling

is the Hazard and Operability (HAZOP) analysis proposed in the 1960s for the chemical

industry [22]. The formalism of this analysis revolves around guidewords, e.g., LESS / MORE

PRESSURE / TEMPERATURE, based on which a team of experts analyses the consequences

of deviation from the structurally established process flow. The identified drawbacks of

this method are labor-intensiveness, a descriptive presentation of relationships between

the object and hazards, and – despite the proposed formalism of the analysis – excessive

reliance on the knowledge of experts. Similarly, as in the case of FMEA, labor intensiveness

and the related costs harm the comprehensiveness of the model [5], [4].

In general, qualitative methods are the beginning of risk analysis, and the examples pro-

vided only illustrate the basic problems associated with them. Similar problems also exist in

quantitative risk assessment models, which aim to estimate and concentrate attention on

the most relevant and impactful hazards from the perspective of safety [5]. In quantitative

models, the problem of identifying the system’s structure, hazards, and interactions is com-

pounded by the problem of estimating the probability of an event and its consequences.

For example, the FTA approach defines a top event that is a critical, hazardous event (e.g.,

fire). Using deduction, that is, backward reasoning through a causal sequence of events over

the structure of the system, FTA aims to identify basic events that lead to the top one. Apart

from direct causality relation, formalism includes logical and/or gates to combine various

causes over the system structure, allowing identifying the cut set. The cut set is a set of

simultaneous basic events that ensure the top event. We can derive the minimal cut set that

is the smallest possible (irreducible) cut set. Additionally, given the minimal cut set, the flow

of the impact over the structure, and the probability distribution of basic events in the cut

set, we can estimate the probability of the top event together with the importance measures

of each basic event influencing the top event (Birnbaum and Fussell-Vesely measures) [5].

The measure will prioritize events for further analysis or safeguarding.

Although FTA represents the flow of events and provides a better understanding of

potential sources of failure, it is limited. It is constructed manually, requires significant

effort and knowledge, and cannot represent the interaction of several top events [5]. Ex-
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cessive reliance on expert knowledge is prevalent in other quantitative methods as well.

In Bayesian networks, which are more flexible than FTA as they can represent causality

relations for several outcomes in the system, the flow of causality itself and conditional

event probabilities or rather believes have to be assumed by experts [5].

Given the examples provided, it is clear that the network representation of risk interac-

tion is not a novel approach but a foundation of more informative risk-related analysis. In

parallel, as most risk-related resources are written, there is an ongoing effort to consume

textual resources to comprehensively analyze unstructured or semi-structured descriptions

of various risk-related events. Expert systems are already targeting this task. Although they

represent risk interaction in a network manner to integrate various sources for combined

analysis, they differ in framing the problem.

Formal solutions rely on representing the system, its structure, and the connectivity of

its components through an ontology. This approach augments existing hazard identification

processes, i.e., Failure Mode and Effect Analysis (FMEA), by defining the problem as a

reasoning task. The reasoning combines facts collected through the system analysis with

concepts and axioms implemented in the ontology.

Ontology is a powerful approach to detecting the impact of events on the system. This

approach allows one to evaluate which components are affected by the occurrence of a

specific hazard. However, it does not provide a quantitative indication of which compo-

nents are the most vulnerable, meaning the largest number of hazards impacts them. The

Labelled Property Graph (LPG) allows such analysis through network representation of risk

interactions. The LPG allows modeling the flow of hazard in the model of the system, allow-

ing graph algorithms, i.e., centrality measures, to indicate which nodes form, for example,

hubs. Such hubs are system components that are the most vulnerable as they aggregate the

impact of many hazards.

This chapter provides examples of ontology and LPG approaches to risk-interaction

detection and discusses how narratives are transformed to allow the analysis.

2.1 Ontology in Risk Analysis

The definition of ontology has evolved over time. It started with one proposed by

Gruber: "explicit definition of a conceptualization" [23], which emphasizes the notion of

conceptualization - a structure of concepts and relations between them that is abstracted

away from the real-world objects. In this aspect, conceptualization shall represent the
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simplified, abstract model of the area of interest. In 1997, Borst defined an ontology as a

“formal specification of a shared conceptualization” in which a "shared" feature underlines

that the ontology shall be interoperable, forming a backbone of a common interpretation

of the area of interest. The formalism of ontology facilitates the machine interpretability of

the ontology itself, allowing automated reasoning. In 1998, Studer provided a combined

definition of ontology as a "formal, explicit specification of a shared conceptualization"

used today [24]. Ontology in the risk domain serves two purposes:

• to normalize (through shared conceptualization) and integrate risk information rep-

resented in various narratives and,

• to automate (as conceptualization is formal) and therefore support the impact analy-

sis itself, as manual validation of the impact is inefficient

2.1.1 Direct Application of Reasoning on Ontologies in Risk Analysis

Application of the ontology in a formal query-based accident analysis

In the chemical industry, processes and procedures can be very complex, and descrip-

tions of events and their contexts are difficult to interpret. However, it is important to

identify cause-effect relationships and recognize lessons learned. The interpretation de-

pends on the experience of the human experts involved in safety assessments. The ontology

can help as it can be constructed explicitly around the critical analysis goals called comp-

tence questions to put a narrative into a semantic framework around the goals, for example,

[25]:

• "What are the hazardous events that involve a specific substance and equipment?"

• "What are potential causes of a specific hazardous event, based on the involved

substance and equipment (location)?"

• "What are the potential consequences of a specific hazardous event, based on the

involved substance and equipment (location)?"

Automatic ontology construction directly from the descriptions is difficult [26]. Therefore,

the initial ontology can be created manually and contain the main structure of concepts

and relations (a terminology box - TBOX): (Fig. 2.1):

• HazardousEvent: potentially harmful event,

• Location: involved equipment, unit or plant component,

• Substance: any involved chemical substance,

• Cause: potential causes that led to the hazardous event,
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Figure 2.1: Core Concept Structure [25]

Figure 2.2: Expanded Concept Structure [25]

• Consequence: events resulting from hazardous events.

Core concepts are then used to define derived concepts, such as Accident (Fig. 2.2). The

narrative is processed in a semi-automatic manner (as human validation and correction

are needed) to link the extracted terms with specific concepts (Fig. 2.3). The goal is to put

all extracted terms in relation to each other to identify cause-effect relationships: cause →
hazardous event → consequence.

The cornerstone of such an approach is correctly identifying individuals in the text

for core and expanded concepts (the assertion of terms- ABOX). In the first step, a custom

pattern-based tag recognition is performed to simplify their expression for seeding concept

terms. It is assumed that concepts can be described with one, two, or three words that occur

in a certain sequence. For example, for the hazardous event FIRE, various expressions of
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Figure 2.3: Creating the ontology from narratives by expanding core concepts and relations [25]

fire such as jet fire, pool fire, or flash fire will contain FIRE tag. For the cooling equipment,

various expressions for cooling like cooling system or cooling jacket will contain COOL

tag. The semantic relationship between terms, for example, that specific hazardous event

took place at the location with specific consequence is assumed if they co-occur in the

pre-defined context. The relationship is then manually validated.

In this way, a set of ontology individuals is created. The risk-related reasoning is per-

formed directly on the constructed ontology with a formal query designed to answer the

specific competence question and executed through the HermiT reasoner [25].

Application of Ontology to Integrate Data from Various Documents

One of the challenges in performing the risk assessment is to perform it holistically

when the overall task is split into subtasks distributed across teams of experts. Failure

Mode and Effect Analysis (FMEA) [27] is a good example of such a situation. From the data

acquisition perspective, an established methodology constrains data to be provided to the

specific FMEA format (Fig. 2.4). The format specifies that each component has its specific

function within the system, its failure mode that defines how it breaks, and an associated

failure effect. Unfortunately, failure analysis is performed in separate documents, and

human reasoning across separate spreadsheets is laborious. Therefore, there is a need for

an ontology to support it.

A hierarchical decomposition of the system into its functional sub-systems precedes

the application of FMEA. Therefore, the relationships between components, which are

both physical and functional, can be explicitly coded as axioms in an ontology and hence

become interpretable by logical reasoner software such as OWL, Pellet, or HermiT. As each

component has multiple failure modes that are related to other components, the effect
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Figure 2.4: FMEA Spreadsheet format [27]

Figure 2.5: FMEA Ontology Hierarchy [27]

of a failure at a low level can become a failure cause of a higher level. These effects are

propagated through the system hierarchy until the final failure effect is identified.

In the proposed holistic analysis, the constructed ontology is the extension of ISO

15926-14 ontology [28]. It contains a target functional system decomposition (FSO Ontol-

ogy), specific FMEA ontology, which represents failure effects, failure mode observations

ontology (FMO Ontology), and components of a particular asset (ASO Ontology) (Fig. 2.5).

The FMEA ontology defines concepts denoting the system’s inferred state, for example:

ObjectInFaultState. The reasoning is performed for a specific individual in a specific state.

For example, for the object "heater" and the state "heaters malfunction in the overcurrent".

The inferred state of the "heater" is ObjectInFaultState (Fig. 2.6). Assuming the hierarchy of

components within the system, the failure propagates across the hierarchy where Object-

InFaultState is deducted for "heater system" and "heating, ventilation and cooling system"

(Fig. 2.7).

The FMEA approach is formal. It relies on formally specified ontology and the well-

structured input format. Still, the linguistic aspect of the content of the FMEA files itself

blocks the general applicability [27]:

• it isn’t easy to ensure that terms and relationships are used consistently, particularly

when the tables are large,

• the language used is often specific to those involved in a particular FMEA activity,

• a spreadsheet typically has no explicit semantics, making it difficult to find, share or

reuse the knowledge acquired during the analysis.
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Figure 2.6: Sample Reasoning in the target ontology [27]

Figure 2.7: FMEA Failure propagation across the hierarchy [27]
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2.1.2 Application of Ontology in the Knowledge Graph Construction

The ontology provides a shared understanding of a domain that can be used to struc-

ture information and enable interoperability between different systems and applications.

The conceptualization is defined explicitly and normalizes risk interaction, which is then

analyzed quantitatively through KG representation of risk instead of direct reasoning on

the ontology. The ontology is then a model of the data that allows it to be stored coherently

in the Knowledge Graph implemented as Labeled Property Graph (LPG).

Ontology for Railway Accident Analysis

The analysis of railway accident reports in Switzerland faces the problem of multilin-

gual expressions of the same events or concepts (Fig. 2.9). In this scenario, the ontology

normalizes the information across German, French, and Italian. Then, at the conceptual

level, the risk interactions are represented in the form of a knowledge graph (Fig. 2.9) [29].

The ontology is constructed to normalize risk representation for the following compe-

tence questions [25] to identify incident reports in any of the source languages that relate to

an injury occurring as a result of passengers:

• alighting vehicles,

• falling down stairs,

• boarding vehicles,

• being trapped by closing doors,

• being struck by falling bags.

It models the explicit relations between the document (Fig. 2.8), the Record node, the

sentences Sentence node, and the words Word node and concepts. The ontology nodes

represent the concept hierarchy connected by a default relation a_type_of, for example,

"train" is a_type_of "vehicle" (Fig. 2.8). The relations between terms and words are confirmed

manually. The analyst connects variant grammatical forms of words representing the same

term through relation forms. The relationship next indicates the next word in the sentence

used to identify bigram concepts. Unigram and bigram terms are identified through a

measure of importance (Tf_Idf) of terms in the corpus (Eq. 2.1). Additionally, the analyst

defines the hierarchy concept-term (Tab. 2.1).

The proposed approach allowed the analysis of incident reports to collectively identify

the safety-related statistics around competence questions (Fig. 2.10). Although the pro-

posed text processing is a rudiment dictionary of railway safety-specific terms in the three

languages used in reporting, the benefits of the proposed approach are:
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Figure 2.8: Multilingual Ontology with document structure[29]

• significantly simplified query design executed on the KB instead of ontology,

• quantitative analysis of cases of injuries.

T F _I DF = fT

N
ln(

R

RT
) (2.1)

where:

• fT is the frequency of occurrence of term T within a record,

• N is the total number of terms in the corpus,

• R is the number of records in the corpus,

• RT is the number of records that contain the term T.

Ontology and Knowledge Graph Construction for Near-Misses

Descriptions of "near-misses" provide detailed information on complex hazardous

situations, including their initialization, evolution in the system, and barrier effectiveness.

This data is critical from a safety analysis perspective, as barriers may eventually fail in

similar situations.

To properly extract risk interactions from narratives, the use case for ontology is to

explicitly model the event’s evolution in the system and the effectiveness of the barriers [7].

The goal of the KG representation is to answer the following competence questions:
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Figure 2.9: Multilinqual Concept Expression [29]

Concept Term

vehicle carriage, vehicle, ambulance, tram, train, bus

person
doctor, self, customer, person, driver,

passenger, months old, years old, baby, young, old, female, male

object
Bag, alcohol, drugs, stairs, footboard,

customer information system, ticket, door

Table 2.1: Concept - Term mapping [29]

Figure 2.10: Multi-linqual railway incident incident results [29]
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Figure 2.11: EsOpAI Ontology Structure [30]

• “Which are the more vulnerable apparatus in the system (e.g., refinery)?

• "How do they usually fail?"

• "Which are the consequences of such failures?”.

• "Which is the most critical barrier preventing the catastrophe?”.

The ontology (Fig. 2.11) is constructed using concepts defined in EsOpAI (Operational

Experiences via Artificial Intelligence) [30] to represent a near-miss. It contains the following

entities: EVENT, APPARATUS, SUBSTANCE, ACTIVITY, BARRIER, and PEOPLE. The concepts

are further specified to represent more granular concepts. For example, EVENT is split into:

• LOSS related to losses of containment (e.g., leakage, overfilling), FAILURE, which

contains both failure and damages,

• DETERIORATION that includes all the mechanisms of deterioration (e.g., corrosion,

pitting, creep) that caused integrity problems,

• MAJOR depicting all those events which have the potential to generate other incidents

(e.g., fire)

• SUCCESS to indicate the positive barrier action that contributes to interrupting the

incident escalation

The APPARATUS entity is divided into EQUIPMENT, which indicates a whole, and COM-

PONENT, which indicates a part of the EQUIPMENT connected with a PART_OF relation.

EsOpAI has been designed with four relationships:

• RELATED_TO, which is a generic relation between two entities,
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Relation Head Concept Tail Concept

causes EVENT, ACTIVITY, PEOPLE EVENT

involves EVENT, ACTIVITY, APPARATUS, BARRIER SUBSTANCE

part_of APPARATUS, BARRIER APPARATUS, BARRIER

related_to EVENT, BARRIER, ACTIVITY
ACTIVITY, PEOPLE,

APPARATUS, BARRIER

Table 2.2: EsOpAI Relations [30]

Figure 2.12: EsOpAI Annotation Example [30]

• PART_OF describing a physical connection between two entities,

• INVOLVES, that relates an entity to a substance,

• CAUSES, which states a causal connection between two entities

The relations are predefined and established between the entities (Tab 2.2). Supervised

learning is used to detect concepts and relations in the narrative. The annotation strategy

strictly follows the structure of the ontology, and the entities and relations are annotated

exactly to the intended concepts and relations (Fig. 2.12). Finally, detected triples i.e.:

head_concept - relation - tail_concept are extracted directly into the KG. The structure of

the KG is aligned with the ontology as the triplets loaded are detected according to the

ontology definition of entities and relations between them. The KG allows for "ontological

explorative analysis" [7], a combined network analysis of numerous near-misses across

installations and plants. It allows quantitative answers to the competence questions, for

example, "most frequent causes of failures upon the most frequent apparatus that fail in

refineries" (Fig. 2.13).
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Figure 2.13: Top five apparatus failures (AE) causes in refineries in Italy [7]

2.2 Knowledge Graphs and Network Representation of Risk

The network representation of risk enables the topological analysis of its interactions:

degrees, shortest paths, and centralities [1]. For example, the betweenness centrality mea-

sure will indicate the degree to which the node transmits the impact of the hazard to other

nodes. Identifying such nodes in the model would help focus the protection measures

around that specific system element. In general, network representation of risks will allow

[1]:

• to characterize the risk-related impact of each system component, represented as a

node, in the system’s overall structure,

• to simulate the impact of the system’s structural changes from the risk control per-

spective. For example, the analysis of the impact of change in strictly law-regulated

IT infrastructure due to the statutory or standards change of the selected component.

• to build a simulator of real situations that are not repetitive (crisis situations). The

simulation can occur under varying conditions of risk.

There are several examples of applications of such risk representation strategy. They differ

in the method for normalization of risk relations between the intended concepts. These

methods do not rely on prior ontology definitions. The assumed KG structure defines

the Knowledge Acquisition Pipeline, which consumes textual information directly and

transforms it into a required representation. Entities and relations between them are key

elements to detect.

2.2.1 Representing HAZOP Safety Reports as Knowledge Graphs

Significant safety knowledge is encoded in textual sources, such as formalized safety

reports, such as the HAZOP, near-misses or FMEA. However, this knowledge remains undis-

covered because it is not transformed into a representation suitable for comprehensive
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analysis. The Knowledge Graph (KG) representation allows such analysis. The structure of

the KG depends on the modeling goals, namely, which aspect of the narrative is useful and

shall be represented. For example, the risk interaction network (Fig. 2.14) consists of four

node types: suggestion, result, cause, and equipment/assets. The goal of the representation

is evaluate and combine hazard causes, effects, and prevention measures and, therefore,

validate the gaps in the safety design. Apart from that, in this specific case, the graph allows

employees to picture and understand the safety and the operational requirements for the

process [31].

The acquisition pipeline assumes a specific input data format i.e. HAZOP. HAZOP, which

is a semi-structured analysis methodology, uses a defined set of guidewords to help evaluate

the consequences of deviation from the regular process flow [5] simplifying entity detection

[31]. In this case, processing is performed as follows. There are three application layers. The

conceptual layer encodes knowledge of the processes used in the extraction performed

in the extraction layer. It aims to normalize HAZOP reports to combine information from

different processes and represent industrial safety knowledge. The goal of the layer is to

define the node types (concepts) used in the storage layer, like cause, result, equipment,

or suggestion. For example, a cause entity could be: "coil blockage", result: "crude oil in

the vaporizer will boil” and the recommended entity: "clean the coils". The extraction layer

extracts all entities and relationships among them. In short, it extracts the knowledge triple:

subject, relationship, and object and saves them into a storage layer for reporting. The

storage layer is the LPG containing the network representation of risk (Fig. 2.14).

2.2.2 Representing Free Text Risk-Related Narratives as Knowledge Graphs

Reusing and releasing the value of industrial safety knowledge is a step towards a com-

prehensive risk repository. Modeling risk interaction as a heterogeneous graph, where the

node type represents a concept of risk, cause, or asset, increases the clarity of representation.

However, the approach proposed for the HAZOP analysis is limited because it assumes a

specific input format; hence, the processing has to be aligned.

A solution detecting risk relations for railway safety parses natural text description

of British rail accidents [6]. The processing is step-wise (called the knowledge extraction

steps), where each step is responsible for detecting, linking, normalizing representation

across documents and mentions (knowledge fusion step), and eventually representing risk

interactions in the form of the knowledge graph, namely RKGRS (Fig. 2.15).

The resulting structure represents risk interactions as a heterogeneous graph with
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Figure 2.14: Exemplary Storage Layer Content for Hazop Analysis [31]

defined node types representing different concepts. For example, C nodes indicate Cause, D

- danger, and K consequences. For example, C01 (imperfect management of maintenance

practices) will result in danger nodes: D01: struck by object or collision, D07: derailment.

Consequences are K03: damage to structure, component, or device, K01: injuries (Fig. 2.16).

The ability to parse free text reports is a step in the right direction, as the input format

shall not limit the comprehensiveness of the risk repository. However, relaxing the format

results in a complicated knowledge acquisition pipeline. In this case, the ensemble of clas-

sifiers is trained in a supervised manner [6], and the training set was designed specifically

for the railway safety scenario. The training uses seventeen text augmentation algorithms

to enrich the representation (through embeddings) or disturb the text insignificantly by

adding or replacing characters or synonyms to achieve acceptable training results. To apply

the proposed approach to other domains, the training set and text augmentations shall be

adjusted [6].

2.3 Summary

The methodology for integrating and representing risk interactions from description is

not established yet. Solutions are specific and target specific areas, such as railway accidents
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Figure 2.15: Railway Accident Reports Processing Pipeline [6]

Figure 2.16: Railway Safety Knowledge Graph [6]

31



2 . 3 . S U M M A R Y

or specific competence questions for the process industry. The limited applicability of cur-

rent solutions does not come from the fact that creating a "comprehensive risk ontology"

that would normalize risk representation across various descriptions is potentially impossi-

ble. The ontology is a shared conceptualization. Therefore, with a coordinated effort, we

can potentially cover the most critical, targeted areas such as chemical processes, railway,

or electricity generation. Within the "comprehensive ontology," it would be possible to run

simulations to identify areas that require specific protection.

The flexibility of human language in risk description is a limiting factor. This flexibility

translates into complicated text processing pipelines, and it lacks a general, comprehensive

approach to detecting risk-related relations in the narrative. In many cases, domain-specific

solutions are required to prepare their own detection mechanism, which relies on the

specific training and validation sets. Even solutions targeting well-defined areas need to

address the training set issue by providing additional constraints on data, i.e., hierarchy

[32]. This approach uses the taxonomy of events to augment the training and improve

the detection quality. Examples of an element lower in the hierarchy will be used to train

higher-level concepts.

Focusing on the linguistic aspect of risk modeling is necessary and may become a

foundation for an application that comprehensively represents risk interaction.
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Chapter 3

Relevant Natural Language Processing Tech-

niques

The examples described in the previous chapter relied on two key natural language

processing elements: Entity Recognition (ER), which is responsible for detecting a concept

such as "event," "apparatus," "cause," or "suggestion" in the narrative, and Relationship

Extraction (RE), which confirms risk-related semantic relations between detected entities.

This section describes NLP techniques essential in the ER and RE areas. It discusses their

limitations and applicability in detecting risk-related entities and relations.

3.1 Entity Recognition

Entity Recognition, or Named Entity Recognition (NER), is an NLP task that aims to

assign a text span to one of the pre-defined semantic categories like ’PERSON’, ’COUNTRY’,

’ORGANIZATION’ [33]. NER is useful in applications requiring such classification. In KG

construction, NER assigns the concept and classifies nodes. For example, the knowledge ac-

quisition pipeline identifies "Danger", "Consequence", and "Cause" categories to represent

concepts in railway risk interaction. However, detecting risk-related categories is difficult

to obtain using current NER approaches.

Sequence labeling and span recognition are the standard approaches to solving the

NER task. The sequencing and span detection relies on BIO (and BILOU being the variant)

tagging [34]. This method allows the treatment of NER like a word-by-word sequence

labeling task via tags that capture both the boundary and the entity type. In the BIO tagging,

B indicates the beginning of the sequence I - inside, O-outside. For example, a sentence

Joseph Robinette Biden is the 48th President of the United States of America., yields the

sequence of BIO tags related to entities PERSON and LOCATION as B-PER, I-PER, I-PER, O,

O, O, O, O, O, O B-LOC, I-LOC, I-LOC, I-LOC, I-LOC .

Formally, the NER classification is the sequential prediction problem to estimate the

probabilities of predicting the ith BIO tag given the context being the history of k, the future
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of l words, and the history of m past BIO tags:

P (yi |x(i−k), ..., x(i+l ), y(i−m), ..., y(i−1))

where k,l , and m are small numbers. Algorithms used to estimate the probabilities of the

tags are:

• Conditional Random Fields (CRFs): CRFs model the conditional probability of label

sequences given input features, capturing dependencies between neighboring labels,

• Bidirectional LSTM (BiLSTM): BiLSTM networks are recurrent neural networks that

can capture sequential dependencies in the input data,

• Transformer-Based Models: Transformer architectures such as BERT [35], GPT [13],

and their variants which have shown state-of-the-art performance in NER by leverag-

ing self-attention mechanisms to capture contextual information

However, to design an efficient NER detection system, the following design questions

need to be answered [36]:

• How to model non-local dependencies,

• How to use external knowledge resources or construct a training set.

From the RA perspective, both pose significant difficulties.

The non-local dependencies mean that the classification of the text span depends on

the selection of the context and changes with the context size. The local dependency means

that syntactic and semantic features of the entity must be present in the current context of k

past l future words and m past tags. Such a context definition is fixed across the narrative to

perform the classification. For example, in the sentence "Joseph Robinette Biden is the 48th

President of the United States of America." term "America" is a part of the LOCATION, and

all features required to classify "America" this way are present in the context. Likewise, in

the sentence "Brian Moynihan is the President of the Bank of America", the term "America"

is a part CORPORATION as local features of the same context definition allow classifying

the term correctly though the different class is assigned.

The fixed, local context assumption harms the classification in the risk-analysis domain.

In the railway case [6], to classify a text span to a "Danger" category, the context shall

contain features expressing some harmful effect of it, as the token "Bank" differentiates the

classification of America in previous examples. In general, such features may not follow the

locality assumption as effect, e.g., injuries and damage to the infrastructure, can follow the

"derailment" danger in an arbitrary long context.

Another difficulty in a direct application of the Entity Recognition approach is the

contextuality of risk-related concepts. The contextuality means that the classification of the
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text span depends on the classification of other text spans in the context. Formally, current

tag classification depends on the fixed history of m tags. Depending on the intended focus,

the same text span can have multiple classifications in the same context. For example, in

the sentence "A spark ignited a container supplying fuel to the engine," depending on the

focus, the "container" is a "Danger" as it can be ignited by the spark, potentially destroying

the engine. Simoultenousely, it is a "Component" as, without it, proper engine functioning

is impossible as it is responsible for fuel supply.

Last but not least, supervised learning is the dominant approach to solving the clas-

sification task. In the risk analysis domain, standardized training sets are not available.

Preparing a training set means manually solving the entity recognition task, especially in

rare, extraordinary malfunction cases.

3.2 Relationship Extraction

The efficient, algorithmic Relationship Extraction started with introducing the Hearts

Patterns. Hearst proposed to detect hyponymy, namely "is-a", relations, e.g., "rose is a

flower". The approach used a set of regular expressions on the syntactical decomposition

of the sentence. It was motivated by two goals:

• to avoid the need to pre-encode the extensive knowledge and

• to apply the same approach across a wide range of text.

[37]. The key assumption was that the syntactical patterns are enough to define relations

within a sentence effectively. It quickly turned out that the flexibility of human language was

underestimated, and the pattern approach proved ineffective. The Hearst Patterns, however,

initiated intensive research in the RE area. This section will evaluate the applicability of

existing RE methods in the context of scarce resources in risk analysis.

3.2.1 Intra-Sentence Relationship Extraction

Sentences are composed of smaller linguistic units, such as words and phrases, and the

meaning of a sentence is determined by the meanings of its constituent parts and the way

they are combined. Sentences convey semantic relationships between their parts, words,

and phrases that can be detected and identified. Their syntactical decomposition provides

additional features: parts of speech, grammatical relations, or named entities within the

sentence (Fig. 3.2) [38]. These features were used extensively in the initial approaches to

the RE.
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Figure 3.1: Exemplary Sentence

Figure 3.2: A sample sentence decomposition to a feature-rich dependency tree

Rapid progress in the RE started after launching a dedicated relationship extraction

task between pairs of nominal within a single sentence [39]. Initial solutions relied on

heavily syntactic features and formulated the problem as kernel-based classification of

the shortest path in the sentence dependency tree [40], maximum entropy models over

syntactic features in the sentence [41] or graphical models [42]. Currently, two approaches,

a transformer-based [43], and dependency decomposition, graph-based [44] trained in a

supervised manner, are currently the best models.

The main drawback of the state-of-the-art approaches that limit their direct applica-

bility in the Risk Analysis domain comes directly from the training strategy. A supervised

approach, although very effective [43], [44], does not guarantee the same performance on

the vocabulary that is out of domain [18]. It is hard to imagine a scenario in which each

new failure event is provided with a dedicated training set that would contain annotated

elements. This would mean we solve RE classification tasks manually each time we analyze

risk interactions for a specific case.

Relaxing the supervised training strategy and relying on an unsupervised approach is

tempting. However, the unsupervised approach falls short of applicability to risk analysis

due to large corpus requirements or reliance on auxiliary classifications, such as entity
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Figure 3.3: Verbalizer Approach to RE [48]

recognition, to improve clustering results [45].

An approach that relaxes the training set and the corpus requirements uses the direct

application of textual entailment [46], [47] in relation detection. In this approach, a relation

classification task is cast as an inference of the hypothesis that the sentence, being a premise,

entails the relation pattern of interest [48]. The approach assumes that the subject and the

object of the relation are in the sentence, and relationship templates are augmented to

validate them against the premise. A template with the highest entailment score is selected

(Fig. 3.3) [48].

Although relaxing the most critical constraints on risk analysis, namely training set

and corpus, the verbalizer is limited in the assumption that the sentence defines a rela-

tionship and the patterns are evaluated for sentences only. In a general corpus, almost

40% of relations are defined across sentences [49]. Unfortunately, the distributed nature

of the relations in the risk domain is prevalent as information on hazards is stored across

documents [31], [6].

3.2.2 Inter-Sentence Relationship Extraction

Inter-sentence relationship extraction is an approach that focuses on identifying rela-

tions across the whole document. Such detection requires complex cross-sentence infer-

ences to synthesize information from the whole document to detect relationships correctly.

Such reasoning is relevant in the domain of risk analysis as well and includes [49]:

• logical reasoning, that requires identification of proper "bridge entities" that connect

the head and tail of the relation. Such specific entities are essential to model the

propagation of hazards in the description of the system.

• coreference reasoning, that requires correct identification of head and tail entities in
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Figure 3.4: Inter-sentence Relationship Example

the whole narrative,

• common-sense reasoning that requires some additional knowledge to identify a

relation. For example, "William and Kate had 4 children". Therefore, Kate could be

"a spouse of" William. In the risk domain, such scenarios are not uncommon. For

example, "gasoline can ignite". Therefore, assuming that gasoline "can cause" fire is

natural.

Therefore, identifying relations in an inter-sentence scenario requires modeling semantic

interactions between mentions of entities between sentences. The direction of the relation

may not follow a "reading direction." For example, it is possible, given the exemplary text

(Fig. 3.4.), to verify that "droplet" is in a relationship with the "engine". In this case, the

analysis may follow the deduction path: "droplet" → "supercooled water droplets collide

with a surface" → "if supercooled water droplets collide with a surface they may result in

blocked fuel inlet pipes" → "blocked fuel inlet pipes" → "aviation fuel designed for use in

aircraft powered by gas turbine engines" → "engine" Document-level relationship extraction

will be reviewed for two types of models: sequence-based and graph-based.

Sequence-based models

Sequence-based approaches avoid explicit modeling of the document. Instead, a deep

neural structure is created, where each component specializes in a dedicated inference

separating the relationship within sentence (local) and document (global) (Fig 3.5) relation-

ship detection. The specific architectures use different neural networks, i.e., Bi-LSTM, to

model local and global dependencies between entities [50]. The document-level Bi-LSTM

layer is responsible for modeling the multi-hop, cross-sentence reasoning.

The separation of contexts models interactions document-wise and supports cross-

sentence reasoning. The same philosophy, but using another type of neural networks

approach, has been proposed in the Mentioned-based Reasoning Network (MRN) [51]. In

this approach, local contexts capturing close subject-object relations are modeled through

the convolution of entity mentions. Stacking the convolution models multi-hop dependen-

cies between them in the narrative. A document-wise representation of a relation, a global
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Figure 3.5: Architecture of the Hierarchical Inference Network. Sentence-level, entity-level context is

separated from document-level context [50]

context, is achieved through a co-attention of local context convolutions. Co-attention

performs a weighted combination of several local contexts (local relations) to achieve its

global representation.

Another approach in sequence models relies on the observation that most cross-

sentence relations are fully defined within the fixed context anyway. The statistics around

the general distribution of head and tail relation entities is that they are mostly separated

by three sentences in the narrative [52]. Therefore, the RE detection is cast as selecting

a combination of at most three sentences from the document. These sentences would

form the relation context. The context must include references to both the head and tail

entities, and it is used to classify the relationship. The strategies for selecting the sentences

are as follows. Sentences may form a "Consecutive Path" (Fig. (3.6) following each other

in the "reading order." Another type of context supports multi-hop reasoning, meaning

each sentence is connected by a common entity. In this context, sentences may not follow

the "reading order"; however, their number is still limited to three (Fig. (3.6). The third

strategy defines the context as pairs of sentences containing the first, the head entity, and

the second, the tail. The set of contexts is the cartesian product of sentences containing

the entities (Fig. (3.6). The contexts constructed are used to train a discriminative classifier

based on the prepared training set [52].

The sequential models are discriminative classifiers trained on a dedicated document-

level training set.
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Figure 3.6: Types of contexts in sequence-based document level RE [52]

Graph-based models

A graph-based approach has gained significant attention lately and is considered the

most effective approach to document-level RE. It is based on a network representation

of the document [53]. The representation captures semantic, syntactic, and positional

information on the entities, providing more features for relationship classification. The

general processing pipeline involves splitting documents into sentences and detecting

the entities that will be evaluated for relationships in the document. The document-level

relationship classification tasks are usually cast as a link prediction problem between the

nodes representing the entities of interest.

There is a significant number of models solving document-level RE tasks varying

in implementation details. For example, the Edge-oriented Graph (EoG), which is the

extension of an earlier model for solving sentence level RE [54], represents the document

as a heterogenous, undirected graph containing the following node types (Fig. 3.7):

• Entity node represents concepts.

• Mention node is a span describing the entity.

• Sentence node is a sentence that holds the mentions.

Each node representation is computed as the average of the embedding of its constituent

words. The embeddings of words are computed in the Sentence Encoding Layer using the

BI-LSTM network (Fig. 3.8). The edges represent different roles of the node in the document:

• Entity-Mention (EM) edge indicates that the mention describes an entity,

• Mention-Sentence (SS) edge indicates that specific mention is a part of the sentence,

• Entity-Sentence (ES) edge indicates that the entity is contained in the sentence

• Sentence-Sentence (SS) edge connects the sentence to model non-local dependen-

cies. The edge specifies how many other sentences (the distance) separate the sen-
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Figure 3.7: Edge-Oriented Graph Structure [54]

Figure 3.8: EoG Architecture [54]

tences in the document.

• Mention-Mention (MM) edge connects mentions that are a part of the same sentence.

. The edge representation is calculated as the concatenation of the representation of con-

nected nodes. The link prediction task is cast as the classification of the path that links

entity nodes in the network. The path representation is calculated as the non-linear trans-

formation of embeddings of edges in the path [54].

In the Global-To-Local Neural Network for Relationship Extraction (GLRE) [55], the

document structure is also explicitly represented as a network (Fig. 3.9). The structure of

the graph remains similar to EoG’s with only slight modification in that all sentences are

connected without addition distance information:

• Entity-Mention (EM) edge indicates that the mention describes an entity,

• Mention-Sentence (SS) edge indicates that specific mention is a part of the sentence,
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Figure 3.9: GLRE Document Representation and Classification Schema

Figure 3.10: Global-to-Local Neural Network for RE Architecture [55]

• Entity-Sentence (ES) edge indicates that the entity is contained in the sentence,

• Sentence-Sentence (SS) edge‘ connects all sentences regardless of their distance,

• Mention-Mention (MM) edge connects mentions that are a part of the same sentence.

The representation of nodes is an average of the embeddings of its constituent words.

Words embeddings are calculated during text transformation, and it is the embedding

calculated through the BERT transformer of the sentence or short text fragment for better

contextuality [35] [55]. There is no representation associated with the edges. The relation

detection problem is cast as a link prediction problem between entity nodes.

There are two representations of entities: global and local. Each entity can have only

one global representation that is convoluted with the network structure of the document
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[56]. Local representations are weighted combinations of local and global embeddings

of their mentions (Fig. 3.9). The dedicated multi-head attention modules (Multi-head

Attention 0 for the head and multi-head Attention 1 for the tail) combine the mentions. The

final link prediction task between head and tail entities uses concatenated embeddings

of both in the logistic regression task. Contrary to the previous example, which used a

representation of the path between the nodes, the GLRE approach combines document

structure and local linguistic features of the mentions in the RE classification task. [55].

The efficacy of current document-level extraction is limited specifically in two ways:

• it is supervised and may not be generalized onto documents semantically far from

the training sets.

• the approach relies on the pre-processing which detects entities and "entities span".

Quality of entity detection is essential for the overall performance [57].

3.2.3 Transformer-based Relationship Extraction

In LM domain, the RE classification task can be cast as another NLP task. For example,

the verbalizer casts RE as an entailment task relying on the generalization capabilities of

LM in entailment recognition [48]. The other one, but chronologically the first, frames

RE classification as a question-answering (QA) task [58]. This is the first approach to a

zero-shot classification scenario in which a classifier is used for cases not presented in

the training phase. The leading assumption of the approach is that question formulation

generalizes the structure of the relation. Therefore, training on question-answer pairs

instead of relation examples is more efficient. In the direct RE training, the classifier is

responsible for identifying linguistic elements defining the relation abstracting away from

combinations of subject and object [43]. In the QA scenario, the classifier is trained on an

extensive QA dataset instead of an RE dataset [58].

The RE classification problem is cast as a parameterized, relation-specific question,

and the classifier identifies span as an answer. An answer is an object of the relation (Fig.

3.11). The relation-specific question’s parameterization must be specified (Tab. 3.1). For

example, given the sentence Brian Moynihan is the President of the Bank of America, the

goal would be to evaluate the workplace for Brian Moynihan. The parametrized question

would be Where does Brian Moynihan work. In case of a relation not supported by the text,

the classifier returns an empty span.

Language Models are trained extensively over a large corpus. While learning, some

relational knowledge is encoded and can be retrieved directly through a masking strategy.
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Figure 3.11: Question Answering Architecture for BERT [35]

Relation Question Template

educated_at(x,y)
Where did x graduate from?

In which university did x study?

occupation_at(x,y)
What does x do?

What is x’s job?

Table 3.1: Question-Relation Templates [58]
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Figure 3.12: Language Models as Knowledge Encoders [59]

In this scenario, the LM is considered as a linguistic memory [59]. To access this memory,

a simple relation pattern is evaluated. For example, let’s assume that the fact that Brian

Moynihan works for the Bank of America and this information has been encoded in the LM

during its training. If a templated query using a masking strategy is formulated to query

the workplace: Brian Moynihan works for [MASK], then the LM shall substitute bank as the

highest probable token associated with [MASK] (Fig. 3.12).

Large Langauge Models, i.e., GPT3, also encode language knowledge. However, the

conditional, autoregressive text generation capabilities [13] impact the approach to RE.

The conditional, autoregressive generation means that response is generated given the

buffer. The buffer may contain the description evaluated for relations, some instructions,

and examples, which is the prompt [13] [60]. Conditioning on the buffer, information on

the relations will be in the generated output. Specifically, the prompt opens a new avenue

to provide either relationship examples or instructions on how relations shall be detected

in the provided text.

A naive prompt engineering approach (Fig. 3.13) for RE initially did not yield reasonable

results, mostly because the prompts were not addressing the language phenomena, which

led the classifier to focus on shallow language features, which could be, for example, a

simple overlapping of words. The reason for performance significantly below fine-tuned

LM (BERT) were identified to be:

• low relevance regarding entity and relation in the existing sentence-level demonstra-

tion,

45



3 . 3 . T E X T U A L E N T A I L M E N T

Figure 3.13: Naive Prompting [62]

• the lack of explaining the exemplary mappings of demonstrations via precise instruc-

tions in natural language.

[61].

A significant improvement in LLM RE has been achieved by designing prompts com-

bining instructions and examples for the target relation [62]. Therefore RE task has been

formulated as a prompt-generation task containing:

• head and tail entities of the relation,

• examples of the relations from the repository of relation mentions,

• instruction to retrieve each relation in the provided text according to the examples or

"no relation" in case nothing can be matched.

There are several drawbacks to the direct application of LLMs in RE:

• in-context approach itself. Although significant progress has been made in context

size, it is still limited. Additionally, the bigger the context, the more challenging the RE

task. There is no additional information on the structure of the document. Compared

to the graph RE approach, the network representation of the document defines the

contextuality and connectivity of entity nodes. Although the network structure may be

considered an inductive bias of the graph approach, it provides additional information

that is missing if the whole document is provided as a part of the prompt. In this case,

the LLM itself must select the fragments relevant from the perspective of the specific

relationship.

• LLMs will not provide a measure indicating the detection quality.

3.3 Textual Entailment

Inference or entailment is a critical ability to draw conclusions. Ido Dagan defines

textual entailment as a directional relationship between pairs of text expressions, denoted
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by T (the entailing “Text”) and H (the entailed “Hypothesis”). It is considered that T entails

H if a human reading of T typically infers that H is most likely true [46] [63]. In the past,

there used to be several domain-specific applications that were running language inference

like textual entailment, and Textual Entailment (TE) is an attempt to provide a generic

framework that would define the mechanisms of such semantic inference across many

domains and establish a coherent evaluation of the proposed inference mechanisms [46].

In essence, textual entailment is a relaxation of the formal logical entailment and

comprises several elements that come directly from natural language, or human perception

of it, namely, "what a person would typically infer from the premise.". The textual entailment

traits can be put into the following categories:

• generalization, which represents the hypothesis as a more general statement of the

premise, e.g., premise: "antibiotics inhibit the synthesis of bacterial cell walls.", hy-

pothesis: "antibiotics slow down the development of bacterias"

• inference, which involves deriving new facts and grounding them with the provided

premise using, e.g., logical reasoning (premise: "dealer sold 103 cars", hypothesis:

"dealer sold over 100 cars").

• paraphrasing is the situation in which premise and hypothesis are equivalent, and

the textual entailment is a bi-directional relationship. For example, premise: "Frosty

situations lead to conflicts", hypothesis: "Unfriendly situations lead to tensions or

animosities"

The textual entailment is a three-way classification task in which the system shall detect

if a given premise/hypothesis pair is either entailed, contradicted, or neutral. The exact

formal algorithm that would assign the pair to either of the classes does not yet exist. From

the algorithmic point of view, entailment identification is a complex "NLP complete" task

[63] that involves multiple techniques to run the inference. For example, to identify an

entailment for hypothesis 1 (Fig. 3.14), it is required to run the inference to confirm that

"BMI" acquired an "American concern". It requires reasoning that "Huston" is the capital

of Texas and "Texas" is a part of the "USA", a synonym of "America". However, this is not

enough. The headquarters location in Houston still does not make the company American.

To complete the inference, several additional connections must be established: between

the LexCorp owners and the fact that the Americans live in Huston, and that concern is a

coreference to LexCorp itself.

A series of workshops drove the early attempts to solve the TE problem, "The PAS-

CAL Recognising Textual Entailment Challenge." Initially, solutions relied on the syntactic

47



3 . 3 . T E X T U A L E N T A I L M E N T

Figure 3.14: Entailment Example [63]

Figure 3.15: Alignment of similar terms for T (top) and H (bottom) [63]

decomposition of premise and hypothesis to match terms, called anchors. Generally, the

process was structured as follows [63]:

• Candidate Alignment Generation. In this step, premise and hypothesis texts are

chunked to select pairs of terms from both (Fig. 3.15). For each pair, the similarity

score was calculated. The similarity score could be as simple as 1 for identical terms

and 0 otherwise. However, for example, the candidate (1), "purchase","acquired" are

synonyms (Fig. 3.15). There is no candidate "purchase","BMI" as the terms are of

different parts of speech. Therefore, in reality, more sophisticated similarity functions

were used. [63].

• Alignment. This step selects the best alignment between terms in premise and hy-

pothesis through, for example, greedy maximization of similarity score.

• Classification. Given the aligned anchors, a feature vector is constructed. The feature

vector represents "the state of similarity" between the premise and hypothesis and is

used in supervised training. Given the training set, the classifier learns the decision on

entailment / non-entailment given the representation of the premise and hypothesis.

Early attempts to solve the TE problem relied heavily on feature engineering on the

lexical and syntactical decomposition of T and H, therefore their generalization capabilities

were limited. Transformer [9] approach casts the TE task as a fine-tuning task on top of

the pre-trained Language Model (BERT or RoBERT) [35], [64]. Throughout the pre-training
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phase, the transformer model acquires significant linguistic abilities that relax the extensive

manual feature engineering requirement. These abilities are:

1. effective and thorough representations for the meanings of sentences (i.e., their

lexical and compositional semantics) which can be observed through contextualized

embeddings of words [35]. It means that embedding of the word "bank" would be

different in the context of "river" and "money".

2. ability to handle lexical entailment. For example, the relation between "cat" and

"animal".

3. ability to handle quantification, as the transformer is capable of discerning the similar-

ity of sentences based on words such as "none," "some," and "few." These differences

will be visible in the sentence embedding.

4. and much more, for example, the ability to handle coreference (through attention

mechanism), differentiate tense expressions as it can distinguish past, present, and

future expressions, modality (which expresses the possibility the statement is true i.e.

would, could, or possibly), and lexical and syntactic ambiguity which means that two

sentences expressing same thing but differently will have embeddings close to each

other.

These abilities are encoded into embedding the ’CLS’ token, which is the output of the

Transformer component of the classifier (Fig. 3.16).

In addition to extensive pre-training that captures linguistic phenomena, LM is fine-

tuned to the RTE task. The fine-tuning is performed in a supervised manner (Fig. 3.16), with

two large training sets: Stanford Natural Language Inference (SNLI) dataset [47], and The

Multi-Genre NLI Corpus (MNLI) [65]. These datasets address the limitations of earlier RTE

training sets, such as:

• they were limited in number of training examples. Early RTE corpuses had a couple of

thousand hand-labeled examples. This is not enough for deep neural and transformer

models.

• from the linguistic perspective, the examples were not diverse enough and, in many

cases, were simply incorrect. For example, early examples referred to coreference

resolution, which was problematic to resolve even for annotators [47]. An example of

such a case that assumes a specific interpretation of "New York" as a city instead of

the state would be the premise: "A tourist visited New York." and the hypothesis: "A

tourist visited a city."
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Figure 3.16: Transformer Architecture for RTE with training

• MNLI specifically provides entailment examples from ten different sources across

genres and domains to model the usage of modern American English [65]. It signif-

icantly improved the generalization capabilities of the classifier as the training set

accounted for more diverse examples of entailment expressions.

3.4 Semantic Frames And Semantic Role Labeling

Charles J. Fillmore originally introduced Frame Semantics with the basic idea that

one cannot understand the meaning of a single word without access to all the essential

knowledge related to that word, namely, its semantic frame [66]. The semantic frames are

strictly associated with the cases expressed in the sentence, and at times, the innovation

was that it called for the case organization of sentences, known as the compositionality

assumption. In other words, sentences consist of cases that define specific roles of nouns,

e.g., Patient, Agent, or Instrument, that support cases. Cases were considered events or

scenes to study the semantics of the words involved. The approach has led to the creation

of FrameNet. This repository is the evidence of the semantic and syntactic structure of the

cases considered semantic building blocks for each sentence.

In the FrameNet, each Semantic Frame was defined as the specific case and the list of

its arguments. The Frame consists of Frame Elements (FE) and the Lexical Units (LU). The

Frame Elements are participants (case roles) defining the frame, and LUs are text fragments

that evoke a given frame. For example, the frame commercial transaction would be evoked
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Figure 3.17: General Semantic Roles

by the LU John is buying a new car from 20.000 USD, and its FEs would be:

• Buyer or Agent: The person or entity making the purchase, John in our example,

• Seller or Patient: The person or entity selling the product or service, in our example

undefined,

• Product/Service or Instrument: What is being bought, car

• Price: The amount of money exchanged for the product or service, 20000USD.

The same frame commercial transaction would be evoked for synonyms of buy, i.e.,

purchase, acquire etc. The FEs define "Who, What, Where, When, With What, Why, How"

for each frame. The precise semantic detection of frame elements (Buyer, Seller, Price etc),

in general, is not possible. For example, in the sentences I ate dinner with Anna and I

ate dinner with sticks, the objects defined with "with" are difficult to distinguish for their

specific roles. Therefore, generalized roles, e.g., ARG0, ARG1, ARG2, and others, are currently

detected [67] (Fig. 3.17); however, the frame structure is preserved, and the assumption of

case compositionality of the sentences holds.

The compositionality assumption means that each sentence is the combination of its

frames. Therefore, a semantic relation between the entities can be performed within the

frame’s arguments after frames, and their arguments are extracted from the sentence.

Summarizing, a semantic frame serves several purposes:

• it is a means to abstract cognitive schemata, and it is this schema computational

counterpart [68], which means that each frame encodes the relationship and its

arguments,

• The structure of the semantic frame naturally identifies its subject and objects (as

they are the frame’s arguments) and the relationship between them [17] [69], which

simplifies the detection of semantic relations,

• The structure of semantic frames within a sentence decomposes the semantics of

the sentence. Therefore, the relationship detection can be performed directly on
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elements of the frames, not the cartesian product of elements of the sentence itself.

Semantic Role Labelling (SRL) [70] [71] identifies the frame’s structure. A state-of-the-

art deep pre-trained SRL classifier [72] detects the simplified structure of a frame where

instead of an agent, a patient, or an instrument, it detects generic simplified arguments of a

verb: ARG0, ARG1, and others [67].

3.5 Summary

In the Natural Language Processing domain, it is a known fact that solutions explicitly

designed to model specific scenarios are not guaranteed to be generalized in another case as

they rely on the detection schema (classifier and the training set) targeted for that case only.

Although it might sound reasonable to apply more sophisticated language representation

as LM’s pre-pretraining improves the adaptation to a specific task; the evidence suggests

that the generalization achieved under this paradigm can be poor because the model is

overly specific to the training distribution and does not generalize well outside it [73],

[74]. Additionally, training sets often do not comprehensively cover linguistic phenomena,

discouraging such strategies in risk detection. Deep neural networks suffer from inductive

bias overfitting to shallow syntactical features [75] or words that, as for NLI example, indicate

direct contradiction [76]. Thus, the performance of fine-tuned models on specific tasks

and benchmarks may exaggerate actual performance, even when it is nominally at the

human level. Therefore, an effective solution shall rely on language models’ generalization

capabilities rather than a dedicated detection scheme. To design a risk-comprehensive

system, the example-based approach shall be reduced, and instead, general principles shall

be identified and explored.
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Chapter 4

Proposed Solution

This chapter describes a solution to a research problem: identifying risk interaction

in the narrative. In its essence, it is a document-level relationship extraction. It uses the

triplet Threat-Vulnerability-Assets to normalize the risk propagation in the narrative. The

propagation is represented in the Asset-Vulnerability-Hazard graph (the A-V-H graph). The

Knowledge Acquisition Pipeline to construct the graph is presented. Each processing step is

provided with algorithmic complexity to prove the solution’s efficacy, which is multinomial

as opposed to the combinatorial complexity of the naive approach. Relationship acceptance

is formulated as a multicriterial optimization task. The optimization combines an ensemble

of deep textual entailment classifiers and a large language model. The chapter concludes

by discussing an approach to various relationship templates to construct a richer semantic

representation of risk propagation.

4.1 Asset-Vunerability-Threat Triplet and A-V-H Graph

To start with the risk network model, it is required to define its main building block.

The propagation of hazard can be represented by an AVH triplet (Fig. 4.1) [77]. In this

representation, the Threat or Hazard impact the Asset’s due to its interaction with the asset’s

Vulnerability.

In the triplet, the Asset is a component of the system, or its part, relevant from the

perspective of the analysis context. Assets may be at different levels of abstraction. For

instance, an asset may be a car at risk of an accident because of a slippery road surface and

excessive speed. Assets will also be elements of the car, e.g., a tire prone to being punctured

or engine components subject to specific failure, e.g., low oil level The Vulnerability is a

system’s component, its part, or anything that interacts with the system that impacts its

performance. It causes the Asset to lose its ability to function correctly under the influence

of a Hazard or Threat. In the case of a car, a Vulnerability may be a "slippery road surface"

that generates the risk of an accident under the influence of a "speed" Hazard. In the case

of an engine, a Vulnerability may be a "low oil level" generated by the "oil leak" Hazard.
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Figure 4.1: Threat - Vulnerability - Asset Triple [77]

Figure 4.2: The A-V-H Graph, network approach to risk analysis. green : Assets, red : Hazards,

grey:Vulnerabilities [1]

The "Low oil level" is contextual as it will be a Hazard for other Vulnerabilities, e.g., "high

temperature."

To simplify the problem, we can assume that Assets are represented by nouns: "car","pump",

"engine", etc. Similarily Vulnerabilitilies and Risks are represented by nouns as well: "speed",

"rain", "pressure", "temperature" etc.

The Asset - Vulnerability - Hazard, the A-V-H graph is a Knowledge Graph that is a

comprehensive representation of the AVH triplets in the system domain (Fig. 4.2), [1].

4.2 Problem Statement

Given the system’s description contained in the document of D pages, consisting of

a total of S sentences and containing a total of N distinct nouns, create a three-element

ordered set of nouns denoting Assets, Vulnerability, and Threat (Fig. 4.3) forming Asset-
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Figure 4.3: Asset-Vulnerability-Threat Extraction Problem

Vulnerability-Threat triple (Fig. 4.1) and aggregate them into an A-V-H graph (Fig. 4.2) for a

network analysis of risk interaction in the system.

In other words, Assets are system elements identified by nouns in the syntactic decom-

position of the description. The Vulnerabilities, and Threats are contextual risk-related

items detected for each Asset. They are identified by nouns in the syntactic decomposition

as well [1], [77]. Therefore, the task is to identify the ordered triple of nouns to which we can

assign and confirm the semantics of Asset, Vulnerability, and Threat. The identified triplets

must be supported by the narrative from which they are extracted.

Computational Complexity of Triplet Extraction

In the document holding the description, there are N distinct nouns to be assigned to

either of the categories. Estimating the upper bound of the time complexity of the task in

the function of N nouns is straightforward. The function f of the number of triples in the

set of N nouns is the number of combinations without repetitions of a subset of 3 elements

from the set of N elements:

f (N ) = 3!∗
(

N

3

)
Therefore, the problem of selecting the semantic triple is of polynomial O(n3) complexity.

The narrative must support the classification of the elements into either of the cate-

gories. However, the Entity Recognition will not allow for the direct classification of the

abovementioned classes as Vulnerability and Threat are contextualized. To confirm that

the narrative supports the triple, it is required to verify that there is a risk-related semantic

relation among the elements in the triple. Therefore, we will select elements of the triple
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Figure 4.4: Document-Level Validation Problem

Figure 4.5: Semantic relation with context

(Fig. 4.1) that are connected by a risk-specific relation across the document (Fig. 4.4).

Risk-Related Semantic Relation

In general, the semantic relation is defined as a triple containing (Fig. 4.5):

• head entity eh which is the subject of the relation e.g. "floodwater",

• tail entity et which is the object of the relation e.g. "death",

• predicate which defines the kind of relation between the head and tail entities, e.g.,

"has an impact on"

The relation is detected within the textual context, which contains head and tail entities

and supports the predicate between them. The risk-related relation must have properties

that:

• transitive, meaning that if a noun a is a head entity eh in relation r with noun b

being a tail entity et and noun b is a head relation eh in relation with noun c is a

tail entity et , then noun a is a head entity eh in relation with noun c. From a risk

analysis perspective, it means that the hazard propagates across the system, and we

can identify the impact of Threat through a Vulnerability on an Asset

• irreflexive, meaning that fact that any Asset or Vulnerability or Hazard cannot be
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in relation with itself. From a risk analysis perspective, any system element cannot

impact itself, and external factors must exist to initiate risk propagation. Therefore,

i.e., an Asset cannot be a simultaneously Vulnerability and Threat to itself.

• antisymmetric meaning that given the context c, a is in the relation with b and b

is in the relation with a only if a and b are the same entity. In other words, given

the current elements in the Asset-Vulnerability-Threat triple, current Asset can be

assigned Vulnerability role and current Vulnerability an Asset role if and only if there

is another context that supports the switch.

The above assumptions on risk-related relations constrain the network representation of

risk propagation to directed graphs without self-loops.

Triplet Validation Problem

The entities of the triple can be distributed across the entire narrative (Fig. 4.4). The

AVH triple defines the risk relation as a directed relation following from Hazard through

Vulnerability to Asset (Fig. 4.1). In the brute-force approach, the relations are checked pair-

wise within the fixed contexts, e.g., sentence. Therefore, we must find the combinations of

contexts where entities form a risk-related relation such that a chain of relations links the

triple elements.

We assume that there are N distinct nouns distributed across C contexts in the docu-

ment, and there are k nouns on average in each of the contexts. The function indicating

the number of comparisons to perform to confirm the existence of risk-related relation

between any pair of nouns is a function of the number of contexts:

f (C ) = (k −1)C−1kC C !

Therefore, the time complexity of a brute force validation is O(kC C !), and it is intractable.

4.3 Proposed Solution Architecture

There are three main issues impacting the modeling of risk propagation using the AVH

triple:

• computational complexity to validate the naive approach,

• lack of training sets to use other NLP approaches, for example, apply document-level

relationship extraction directly,

• no possibility to detect the AVH triple directly in the narrative using Entity Recognition

approach
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Figure 4.6: Proposed Solution Architecture

The solution will address these problems by:

• decomposition of the processing into specialized steps, namely, constructing Seman-

tic Frames Graph and Intermediate Relationship Graph (IRG), which will reduce the

computational complexity

• ensemble learning that will establish the acceptance threshold for the accepted rela-

tions to counter the lack of training examples and standard ROC analysis

• risk-related relation analysis will replace the entity recognition to identify AVH triple

elements in the narrative

• path analysis on IRG will provide the required validation method

Overall, the solution will answer the research questions:

• First, as it is financially prohibitive, the research shall answer if it is possible to con-

struct a risk detection system without creating a dedicated LLM for Risk Analysis.

• Second, it shall evaluate available trained and language-specialized classifiers and

construct the pipeline to identify risk relations without a dedicated training set.

• Third, a validation method shall be provided.

• Finally, the pipeline shall produce the A-V-H graph, a chosen network model of risk

interaction.

4.4 Sentence Decomposition and Semantic Role Labelling

Semantic Frames are semantic building blocks of sentences. They are at the heart of

the compositional semantics that postulates that the sentence’s overall meaning is a compo-

sition of its frames [78]. Semantic Role Labeling (SRL) detects frames and their structure

in the sentence (Fig. 4.7). The central element identified in each frame’s structure is verbs

[69], for example, offering on (Fig. 4.7). The other elements are generalized semantic roles

(ARG0, ARG1, ARGM-LOC, ARGM-TMP, etc.) [67] identified by the SRL and associated with
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the frame’s central verb (Fig. 4.8) We seldom encounter a situation in which an event is de-

Figure 4.7: Semantic Role Decomposition of a sample sentence

Figure 4.8: Semantic Frames Graph representation of a sample sentence

scribed in a singular sentence with a subject and object explicitly stated without additional

predicates. A singular sentence would transform into a single frame, and the relationship

would be expressed directly. However, this is not the case for complex and subordinate sen-

tences. Therefore, when complex sentences are decomposed, then a hierarchy of semantic

frames is created to capture the interaction between frames and each frame’s argument

separately from other frames’ arguments. (Fig. 4.9).

Semantic frame decomposition is essential for relationship detection as it separates

sentence components according to the frame to which they belong. This simplifies the

analysis as, for example, the relation of interest may be chained in the hierarchy of frames.

In a sentence "A water landing of a jetliner that lost both engines due to hitting birds became

known as the Miracle on the Hudson River" (Figure 4.9), a subject jetliner is linked with

engines and birds through frames lost and hitting. The main frame known is skipped

as irrelevant from a risk analysis perspective. This simplifies the analysis of the relation

between jetliner and other nouns - potential hazards of a jetliner:

1. [jetliner] - "a jetliner lost both engines due to hitting birds" - [engine]

2. [jetliner] - "a jetliner lost both engines due to hitting birds" - [bird]

The relation between head and tail entities is often distributed across the description.

In this case, the relationship is expressed by a sequence of frames that connects them and

forms a reasoning scheme that justifies the existence of the relation (Fig. 4.10). For example,
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Figure 4.9: SFG Hierarchy of Frames

Figure 4.10: Subject - Frame(s) - Object(s)

it is possible, given the exemplary text (Fig. 3.4.), to verify that "droplet" is in a relationship

with the "engine". In this case, the analysis may follow the deduction path: "droplet" →
"supercooled water droplets collide with a surface" → "if supercooled water droplets collide

with a surface they may result in blocked fuel inlet pipes" → "blocked fuel inlet pipes" →
"aviation fuel designed for use in aircraft powered by gas turbine engines" → "engine"

4.5 Semantic Frames Graph

Formally, a Semantic Frame Graph is an undirected, attributed, heterogeneous graph

G = (V ,E)

where:

• V is a set of nodes of the following types:

– Noun: nouns detected in the frame’s argument. White rectangle

– Argument: a span of text describing the semantic role of a frame. Yellow rectan-

gle.

– Verb: verb identifying an event associated with the frame. Green rectangle.

• E is a set of edges representing:
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– role_type : a specific semantic role type for example: ARG0, ARG1, etc.

– verb: a connection to the central verb of the role’s constituent frame. This hap-

pens if the description contains subordinate clauses.

– noun: a connection to a noun that is a part of the frame only.

The graph is constructed by applying recursive semantic decomposition (Algorithm 1)

on every sentence in the corpus. At the sentence level, the decomposition is the recursive

application of deep SRL identification [72] until none of the identified frame’s elements can

be further split into frames (Algorithm 1). Nouns are assigned to the lowest-level frame’s

role and are not repeated at the higher levels.

The results are recorded in a graph structure as a hierarchy of frames (Fig. 4.11). Con-

nections between frames are established through nouns that frames share.

Algorithm 1 Recursive SRL decomposition

procedure P A R S E _ F R A M E(F r ame f ,Gr aph g )

ar g s ← g etSRL( f ) ▷ get arguments of the frame f

ver b ← g etV er b( f ) ▷ get the verb for the frame f

g ← add_node(ver b)

for argument in args do

if argument is a frame then

parse_frame(argument,g) ▷ further decompose current argument in case it is a

frame

else

g ← add_l i nk(ver b, ar g ument ) ▷ connect verb’s frame with its argument

for n in getNouns(argument) do

g ← add_l i nk(ar g ument ,n) ▷ connect frame’s argument with its nouns

end for

end if

end for

end procedure
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Figure 4.11: Semantic Frame Graph Structure

Computational Complexity

Given that, on average, a sentence has f frames, the decomposition of S sentences into

its frame structure is a function of a number of sentences f (S) = f ∗S, which is linear with

the number of sentences.

4.6 Relationship Extraction and Semantic Pattern

The semantic frame defines a deep case as an atomic semantic element [78]. It defines

the actor (subject), the object, and the elements. A single frame defines the semantic

relationship between its arguments.

Within the document, the relations between two adjacent nouns are detected by apply-

ing a semantic pattern on the path of frames connecting them in the SFG. The semantic

pattern, a template t for the relationship context c is a textual core of the relation that re-

quires providing subject i.e., head entity (eh) and object i.e. tail entity (et ). The substitution

is called verbalization (Fig. 4.12) [48].

The frame defines the relation context, which should support the verbalization. En-

tailment evaluates how well it is supported. The premise is the relation context, and the
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Figure 4.12: Semantic Pattern Verbalization: template t, relation context c

hypothesis is the template verbalization.

For example, the frame: "The failure to plan and account for extreme floodwaters

resulted in the immediate death of 26000 as a result of the water itself" contains one

verb, "resulted" suggesting some form of impact (Fig. 4.12). It is a premise. Assuming that

the t : ’has impact on’, head entity: eh : "floodwater" and tail entity: et : "death", then the

verbalization of the hypothesis is "floodwater has an impact on death". Therefore, the

relation detection is cast as NLI problem [47].

Relationship extraction over the SFG graph verbalizes a relationship template t on

frames connecting every Noun node in the graph. The structure of the SFG graph allows

traversing it using an explicitly structured walk on the graph, namely, metapaths [79] with a

limited number of metapaths:

1. noun-role-verb-role-noun where the relationship is contained within a single frame

2. noun-role-noun where the relationship is contained within the frame’s argument,

which is a special case of a single frame,

3. a: noun-role-verb-role-noun-role-noun, b: noun-role-verb-role-noun-role-verb-role-

noun, where the relationship is held in adjacent frames

4. noun-role-verb-role-verb-role-noun where the relationship is contained in two frames

of a subordinate clause

.The structured walks allow the detection of relationships specific to each metapath. There

are two cases (Fig. 4.13):

• single frame: metapaths 1 and 2 ,

• two frames: metapaths 3a, 3b and 4.
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Figure 4.13: Relation Detection per Metapaths

Figure 4.14: Single Frame Case

Figure 4.15: Two Frames Case
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4.6.1 Single Frame Relation Extraction

A single frame case is a basic case in which the relationship between the head and

tail entities is detected within the frame. This is template verbalization case only [48], e.g.,

water vapour create droplets is validated against a relationship template T : "has effect on",

e.g., "water has impact on vapour" (Fig. 4.14).

Computational Complexity

As sentences have, on average, k nouns, in the worst-case scenario, all k nouns would

be part of each frame. We have S sentences in the document, which contain, on average,

f frames; therefore, the number of comparisons to evaluate template entailment is given

by the linear function of sentences in the document: f (S) = k ∗ (k −1)∗ f ∗S. The time

complexity is then linear for the number of sentences in the description: O(S)

4.6.2 Two-frame Relation Extraction

Written sources of risk propagation often assume a correlation of entailment with other

entities based on discourse coherence. For example, in the following sentences "Electricity

was cut off in the control room. All electronic equipment in the room was disabled." it is

natural for a human to infer that "Electricity has an effect on electronic equipment in the

control room". A human reader naturally considers the example as coherent as the discourse

focus does not fluctuate [80].

The two frames scenario targets the case directly. Additionally, the scenario will com-

bine frames that may not follow the passage’s "reading" order, which allows general cross-

document relationship detection. However, having a single noun in common does not

make the frames linguistically coherent. It takes more than a common noun from the case

above, i.e., "room". For frames to be linquistically coherent, they must form a semantic flow,

namely, they must depict a discourse or dialog coherence [80], [81].

The driving assumption behind the centering approach is that "focus", the most salient

entities discussed, smoothly transition across the discourse. It uses the notion of center

to measure the focus shift between two consecutive sentences. The change is measured

between the "forward-looking centers", C f , which are nouns in the preceding sentence, and

"backward-looking centers" Cb [80] which are nouns in syntactically prominent (subject or

object) positions in the succeeding. The centering theory defines three categories of focus

transition: "continuation" where the preceding subject is repeated, "retaining" where the
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grammatical role between the elements in C f and Cb changes and "shift" where elements

in the centers are different.

The centering theory was developed in the 90s; therefore, one of its limitations is that it

can only consider surface forms of centers and does not account for synonyms or contextual

representations of words. Consequently, we retain the original assumption on prominent

roles of centers (subject and objects); however, we measure the "semantic drift" which is

how the semantics of the succeeding sentence Cb is represented in the preceding dropping

the analysis of forward-looking centers overlap entirely.

The verbalizer approach cannot be used directly on both frames nor the complete path

as it does not comply with NLI training [47]. The relationship between entities (nouns)

exists if a path in SFG joins them [40]. A path of semantic frames joining them creates a

passage defining a relationship. For example, a path between water and an engine: "water"

→ "supercooled water droplets collide with a surface" → "if supercooled water droplets collide

with a surface they may result in blocked fuel inlet pipes" → "blocked fuel inlet pipes" →
"aviation fuel designed for use in aircraft powered by gas turbine engines" → "engine"

The generated path may indicate that "water" impacts "engine". However, we cannot

’entail’ the whole path as it would not comply with the training scheme for entailment,

which considers inference on a single sentence only [47] [65]. Therefore, the relationship

detection task is split into coherency and single-frame template entailment and performed

pair-wise for each consecutive frame in the path. The metapath walks 3a, 3b, and 4 perform

the required pair-wise validation for each node’s adjacent frames in the SFG graph.

4.6.3 Modified Dialog Coherence Function

Let Fi and Fi+1 be the preceding and succeeding frames in the path. The backward-

looking centers of the pair of frames Fi and Fi+1 are generalized a subject or an object of the

frame Fi+1 Generalized subject and object nouns are linked to ARG0, ARG1, ARG2, ARG4

roles in the SFG decomposition of the frame Fi+1

Let f c
i ,i+1 denote a coherence function between both frames Fi and Fi+1.

The coherence functions shall be bounded 0 f c
i ,i+1 1 such that the interpretation if,

from the linguistic standpoint, is that if f c
i ,i+1 ≈ 0 means that both frames are not coherent

and if f c
i ,i+1 ≈ 1 are coherent.

The function shall evaluate the following pair of frames (Example 1): F1: water vapour

create droplet and F2: spark causes ignition of fuel as incoherent.

The following pair (Example 2): and F1 : water vapour create droplet and F2: droplet
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can block the fuel inlet pipe as more coherent than Example 1.

To calculate the coherence, we will use zero-shot text classification TC [82] of the

backward-looking centers Cb in the frames and normalizing the output, hence defining

Modified Dialog Coherence Function to be:

f c
i ,i+1 =

1

|Cb |
|Cb |∑
m=1

{
1 : T C (Fi ,m) > TC (Fi+1,m)

TC (Fi ,m)/TC (Fi+1,m) : TC (Fi ,m) T C (Fi+1,m)

}
(4.1)

The function (4.1) defined as such has the properties:

• f c
i ,i+1 ≈ 0 if there is no reference to any of the backward centers in Fi ; hence frames

are incoherent. The score for Example 1 is 0.0022

• f c
i ,i+1 ≈ 1 if there is a perfect overlap of the centers in both frames, meaning both

frames are almost identical semantically.

• 0 < f c
i ,i+1 < 1 if there is an overlap of the centers and frames are semantically related.

The score of Example 2 is 0.6

Computational Complexity

The metapaths constrain the way the SFG graph is traversed. The worst-case scenario

requires the most computation when all relationships are represented as metapath 3b,

which connects nouns separated by two frames sharing one noun (Fig. 4.16). Additionally,

in the scenario, each sentence in the text is singular and decomposed to a single frame;

therefore, each frame has an average number of k nouns. To evaluate all relationships,

we must visit all metapaths 3b subgraphs and traverse them for (k −1)∗ (k −1) pairs. For

each pair, we have to find the shortest path connecting them using the Dijsktra algorithm

- complexity O((V +E)log (V )), where V is the number of vertices in the subgraph. The

subgraph is sparse V 2 >> E , therefore the complexity has the form: O(V l og (V )). The

number of vertices is easy to estimate as there are 2k nouns, 2k roles, and 2 verbs. Therefore,

the time complexity to evaluate all relations in a metapath 3b can be estimated as

O(k) = (k −1)2(4k +2)log (4k +2)

depends on the average number of k nouns per sentence only. In the worst-case scenario, all

metapaths 3b will be connected. Therefore, the upper bound on complexity is the number

of pairs of frames, which is proportional to the number of sentences

O(S) = S ∗ (S −1)

.
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Figure 4.16: Metapath 3b: the worst-case scenario

4.6.4 Combined Entailment Function

Combined entailment f e
i ,i+1(t ) measures entailment of relationship template t within

two adjacent frames in the path Fi and Fi+1. It evaluates the entailment of the template

of the relationship in both frames and their dialog consistency. The function is bounded:

0 f e
i ,i+1(t ) 1.

Let ni be a noun in the path leading to frame Fi like "temperature" in example (Fig.

4.15), n a noun linking Fi and Fi+1 like "water" in example (Fig. 4.15), ni+1 a target noun like

"vapour" in example (Fig. 4.15). Let t denote the relationship template "has an effect on",

which would mean that f e
i ,i+1(t ) would measure if "temparature has an effect on vapour" in

two frames setup (Fig. 4.15). Let t (n1,n2) denote verbalization of the template given pair of

nouns (n1,n2), for example, t("temperature","water) would resolve to "Temperature has an

effect on water". We define a Combined Entailment Function given the template t to be:

f e
i ,i+1(t ) = mi n[ f c

i ,i+1,max[RT E(Fi , t (ni ,n)),RT E(Fi+1, t (n,ni+1))]] (4.2)

where RTE is a classifier detecting entailment classification probability given frame F and

verbalization of the template t . We used transformer RTE implementation [48].

Following the example, we calculate the value of the RTE of the template t "has an

effect on" verbalized as"temperature has an effect on water" of the frame "Low temperature

and high altitudes cause water vapour to create droplets"; the template verbalization "water

has an effect on vapour" for the frame "water vapour create droplets"; dialog consistency

between both frames and apply the rule (4.2).

4.6.5 Multiple Templates

The goal of the solution is to model the propagation of hazards. This defines the

requirements for semantic relations to be:

• irreflexive

• transitive

• antisymmetric.
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Only such relations will model the potential risk propagation within the system. For exam-

ple, a template has effect on meets the criteria as no object can affect itself without external

cause. The effect propagates, meaning that if component a affects another component b

and the component b affects another component c, then component a affects component

c. The effect relation is antisymmetric, meaning that given narrative justifying the effect

between components a and b, such as "airplane uses engines for flying" does not automati-

cally mean the opposite relation unless detected in the narrative specifically. The example

justifies the hazard propagation from engine to airplane only, not vice versa. If the narrative

is expanded with the text: The engine’s performance relies on fuel stored in the airplane’s

wings., only then the has effect on relation can be established between fuel, airplane and

wing and engine.

There are more ways to express the hazard propagation. The hazard will likely propagate

across the structure if an element is "a part of" another element. The "a part of" relation

meets the criteria for risk-related relation as it is irreflexive - an element can be a part of

itself, transitive and antisymmetric - if an element is a part of the other, the other is a whole

not a part of the first. For example, a "battery" is a part of the "engine". Hazards associated

with it will propagate onto the "engine", but not necessarily vice-versa. Another example

is a "a type of" relation, which establishes the taxonomic structure of the elements in the

narrative. The"a type of" relation meets requirements for risk propagation relation as well as

it is irreflexive (hardly any object can be a type of itself), transitive (if an object a is a type of

the object b and then object b is a type of the object c then an object a is a type of the object

c). A "a type of" relation is antisymmetric by definition. Continuing with the fuel example, if

the narrative is expanded with "The ATF is a type of aviation "fuel," then "ATF" connects

"fuel" and propagates hazard to elements "fuel" would propagate: "engine" and "airplane".

From the risk propagation modeling perspective, precise detection and comprehensive

representation of semantic relations between objects is not required. For example, another

risk-related template is introduced "is a part of" with the context "Engine is a part of

the airplane". From a risk propagation perspective, it is irrelevant if the risk propagation

between "engine" and "airplane" is established through "is a part of" or "has effect on".

Therefore, selecting the best risk-related relationship between the entities the narrative

supports, namely, with the highest coherence score, is enough.

Formalizing the approach, let E k
i , j denote the set of edges in the IRG graph connecting

nouns ni ,n j for the template k. Let T denote the set of templates. Let wk (i , j ) denote a

weight, dialog score, between nodes for the template k. Then the relationship Ri , j connect-
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ing these nodes is defined as such a template t that maximizes the total score between the

nouns ni ,n j across all the templates and metapaths. Select the best-supported template:

Ri , j = argmax
t∈T

wt (i , j )

4.7 Intermediate Relationship Graph

The Intermediate Relationship Graph (IRG) is a Semantic Network that stores all de-

tected relations between nouns by applying metapath walks on the SFG. Formally, the

IRG a weighted multigraph (Fig 4.17), where nodes are nouns and edges represent the

verbalizations of the template of, for example, "has effect on" relation; edges’ weights are

either entailment score or value of the Combined Entailment Function depending on the

walk; the metapath that connects the nouns in the original SFG graph is recorded as an

edge attribute.

Both verbalized relation and dialog consistency are transitive. Therefore, it is possible

to traverse the IRG freely, meaning the NLI problem has been transformed into a graph

traversal one. For example, node n1 is directly connected with node n3, which indicates

a direct impact. It is also connected through node n2, which could indicate a mediated

impact and form a a chain of impact.

While traversing the graph, we can use only edges with scores above the assumed

threshold and analyze the evidence. For example, there is a metapath joining nodes n1

and n2 (Fig. 4.17) in the SFG graph. Weight w3 is the score of the template verbalization of

the connection, and m3 means, depending on the metapath, either a frame or two frames

connecting them.

From the risk analysis perspective, the graph provides a complete propagation of

impact between system elements, where edges provide scores and evidence.

The IRG graph is a central point of representation of risk within a single document and

across documents. It allows incremental knowledge acquisition as new relations can be

added to the graph.

Computational Complexity

The time complexity of constructing the IRG graph from SFG is bounded by the com-

plexity of the most complex metapath (3b), and it is bounded by the number of sentences
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Figure 4.17: Intermediate Relationship Graph Structure. Attribute "m": metapath, "w" - weight,

"isYes" - LLM’s validation results

in the narrative, not the number of nouns:

O(S) = S2

4.8 Asset-Vulnerability-Hazard Graph

The Asset - Vulnerability – Hazard (A-V-H) graph aggregates the relationships expressed

in the IRG graph that meet the minimum weight criterion for the weights1. It isolates three

types of nodes essential from the system analysis perspective, namely:

• Asset node: an element of the system that is relevant from the perspective of its proper

operation in the analysis context. Assets may be at different levels of abstraction. For

instance, an asset may be a car at risk of an accident because of a slippery road surface

and excessive speed. Assets will also be elements of the car, e.g., a tire prone to being

punctured. Assets will be engine components subject to specific failure, e.g., low oil

level

• Vulnerability node: an element of an object, an event, or any other object that causes

the Asset to lose its ability to function correctly under the influence of a Hazard. In

the case of a car, a Vulnerability may be a "slippery road surface" that generates the

risk of an accident under the influence of a "speed" Hazard. In the case of an engine,

1the threshold is a solution to a multicriterial optimization task
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Figure 4.18: A-V-H Graph Structure

a Vulnerability may be a "low oil level" generated by the "oil leak" Hazard. "Low oil

level" will be a Hazard for a Vulnerability, e.g., "high temperature."

• Hazard node: a system element, an event, or other asset that exposes the Asset to a

risk due to the Vulnerability

Relying on the transitivity of relations in the IRG graph, the construction of the specific

A-V-R nodes is performed as follows:

• Asset nodes will be all IRG nodes by default.

• Vulnerability modes will IRG nodes that directly affect Assets. Hence, these are the

nodes that directly neighbor with Assets.

• Hazard nodes will be IRG nodes that connect with the Asset through Vulnerability.

These are nodes from which the Asset node is reachable through its Vulnerability.

Therefore, the aggregation transforms a weighted, directed multigraph IRG into an

unweighted, directed graph A-V-H (Fig. 4.18). The connection between nodes in A-V-H

is established if the IRG graph connects them with an edge whose weight is above the

calculated threshold or if there is a path between nodes connected with all edges’ weight

above the assumed threshold.

The A-V-R graphs enable risk analysis using a graph analysis approach, i.e., nodes’
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centrality measure, to identify hazard-related hubs that aggregate and transmit influence

to other system elements [1].

Computational Complexity

The time complexity to establish Asset - Vulnerability pair is given by the time complex-

ity of evaluating neighbors of Vulnerability nodes. In the IRG, sentences and frames are not

directly represented. They are a part of the edge attribute - the metapath connecting the

nouns. In the worst-case scenario, when IRG is a complete graph, each noun is connected

in the narrative by single or two-frame metapaths. Each node will have N −1 neighbors in

this case. Therefore, the upper bound on the time complexity to identify the pair is

O(N ) = N ∗ (N −1)

.

The relation between Vulnerability and Risk exists if a path links them in the IRG.

Therefore, the time complexity is estimated by the complexity of finding the shortest path.

The shortest path, however, shall skip the Asset node as it is already connected with the

Vulnerability. Therefore, the complexity of a single path between selected Asset and Vul-

nerability is O((N −2)log (N −2)). Again, in the worst-case scenario, we must scan all IRG

nodes for Asset and Vulnerability pairs to find the shortest paths to all remaining nodes.

Therefore the overall time complexity is

O(N ) = N ∗ (N −1)∗ (N −2)log (N −2)

which is

O(N 3)

4.9 Validation and Explainability

4.9.1 Validation and Threshold Calculation

Validation in the context of machine learning and data science means evaluating the

model on unseen data. In the proposed solution, as no specific dataset holds unseen data,

validation is performed by another model, the LLM, performing the same relation extraction

task. It aims to establish the cutoff threshold for the weights on the IRG graph. The threshold

is the value of the dialog function that cuts off a maximum number of relations rejected by
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Figure 4.19: Validation Approach

LLM, keeping the maximum number of relations confirmed. The approach is based on the

ensemble of, in fact, three independent classifiers performing the same Language Inference

task ((Fig. 4.19):

1. the entailment and text classification that are combined to provide the estimation of

the coherence function, which is a weight on the IRG edges,

2. the prompted LLMs, which provides another independent decision on whether the

edge encodes the relation template and the edge is justified. LLM works on prompt

engineering principle in a zero-shot setup [83], [13], [84] which is encoded as a isYes

parameter on the edge. The value of isYes: 1 indicates that LLM confirms the verbal-

ization, and 0 indicates otherwise.

The LLM prompt is constructed to provide explicit instructions on the task: "Given the

premise text only decide if given the premise, the hypothesis is true. Answer Yes if true or

No if unclear or false.". Answer ’Yes’ is converted to 1, ’No’ to 0 and recorded as an edge

attribute (Fig. 4.17).

Formulation of the Optimization Task

Let S = {s1, s2, . . . , sn} be the set of elements denoting distinct weights in the IRG graph

with additional attributes associated with them and each element si in the set S contains:

• wi : the weight value,

• y (0)
i : number of edges having weight wi in the IRG classification unconfirmed by LLM,

• y (1)
i : number of edges having weight wi in the IRG classification confirmed.

The elements of the set S have the property that they are indexed according to the

weight:
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∀si , s j ∈ S, if i > j then wi > w j

Let

• t (0) denotes the total number of unconfirmed relations in the IRG and

• t (1) denotes the total number of confirmed relations in the IRG.

Then, we can define functions:

• f (0)(w) returning a fraction of cumulative unconfirmed relations in IRG below or at w

• f (1)(w) returning a fraction of cumulative confirmed relations in IRG below or at w

The values of the functions are calculated as:

f (0)(w) =
∑n

i=1 y (0)
i |wi <= w

t (0)

f (1)(w) =
∑n

i=1 y (1)
i |wi <= w

t (1)

Let

F(w) = (− f (0)(w), f (1)(w))

Then, we can formulate the multi-objective optimization task to evaluate the IRG edge

cutoff threshold of wth , below which we will maximize the number of unconfirmed and

minimize the number of confirmed relations to be removed from the IRG.

min
w

F (w) (4.3)

The optimization task Eq. 4.3, can be solved by selecting the element of the Pareto

Front: ( f (0)(wth), f (1)(wth) such that

min
w

∥F(w)−zi deal∥

where

zi deal = (0,0)

4.9.2 Explainablity

Explainability in AI refers to the possibility that a human can understand, interpret,

and accept decisions made by artificial intelligence agents. It goes past performance scores,

e.g., ROC curve [85] or measures such as dialog coherence or textual entailment. In the

proposed solution, the IRG edges store the metapath, dialog coherence score, and relation

template used to detect the relation between the designated SFG nodes. The explainability
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Figure 4.20: Explaiablity Chain. The path of nouns connected by the IRG edges with their attributes.

Figure 4.21: Explainability Example

means that the solution can provide the exact chain of frames connecting the required

nodes (Fig 4.20), providing all required information supporting the existence of the specific

relation between them. For example, the sample narrative describing the function of the

liver is analyzed to detect how the liver impacts other human body mechanisms, such

as hemostasis. Such an approach would allow us to evaluate the potential impact of the

medicine, which mechanism of action targets the liver. This functionality is important as

medicine can indirectly affect other essential processes. The example (Fig. 4.21) explains

how the liver impacts fibrinogen, given the narrative on the liver.

4.10 Summary

There has been limited success in designing a Knowledge Acquisition Pipeline for a

comprehensive network representation of risk interactions. Unfortunately, most current

solutions rely on the dedicated detection schema targeting either a specific input format

[31] or a specific domain [6]. The proposed solution relaxes the training set constraints. It

applies existing and available deep NLI classifier BART [82] to infer the relation through the

entailment between relationship context expressed as the combination of frames.

Compared with the direct approach to identifying risk-interaction triples (Asset-Vulnerability-

Risk) in the narrative, the proposed detection and validation are performed in multinomial

time complexity, which is feasible for large descriptions. The proposed solution achieves all

the research goals given:

• Large Language Models

Although it is possible to train a dedicated LLM, i.e., LLama [86], several challenges
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would have to be resolved to use such LLM directly:

- insufficient textual data

- still expensive infrastructure

- a prompting strategy to identify risk-related relations.

Current general LLMs, such as chatGPT, LLama, or FLAN, encode general language

knowledge. Their general linguistic capabilities were used, i.e., to confirm effect

propagation instead of threat or risk directly.

• Existing general-purpose language classifiers

Alternatively, we can train a dedicated transformer-based [35] classifier to classify all

risk-related candidate relations in the narrative. Such an approach, however, would

require a significant training set, which is not available for the risk domain. Instead,

the solution suggests using a verbalized semantic template entailment approach that

scores (values of the Dialog Function) are the plausibility of the template expressed

in the semantic frame.

• Validation Approach

The relationship detection results are validated twofold:

- through multiobjective optimization, which establishes the acceptance threshold

for entitlement scores, - through a direct "reasoning" path: the sequence of frames

with the Dialog Function scores that connect the entities.

• Knowledge Acquisition Pipeline for A-V-H graph

The processing constructs the required network representation of risk interaction,

namely the A-V-H graph.
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Chapter 5

Results

In this chapter, I discuss the efficacy of the proposed solution, aiming to provide an

analysis of its performance and impact. Building on previous chapters’ theoretical founda-

tions and design principles, I focus on empirical evaluation and practical implementation.

This chapter is a critical juncture in my work, transitioning from conceptual frameworks to

practical results.

The solution’s efficacy will be discussed using the DocRED dataset, which is used as a

benchmark for general-purpose inter-sentence detection. The multi-template example will

show that it is possible to construct more comprehensive IRG and A-V-H graphs. Lastly, the

impact and selection of various language models will be discussed.

In addition, synthetic examples will explain the functionality in greater detail. I also

explore qualitative outcomes through case studies and practical applications. These real-

world examples illustrate the solution’s versatility and potential to address various chal-

lenges across domains.

This chapter aims to substantiate the proposed solution’s value, demonstrate its capac-

ity to deliver meaningful improvements, and lay the groundwork for future advancements.

5.1 Knowledge Acquisition Pipeline

The synthetic example of the risk-related report contains a description of the behavior

of the fuel and its impact on the engine and aircraft (Fig. 5.1). Although it is not explicitly

expressed, there is a logical connection indicating that potential risk interaction between

"water" and "fuel" in the context of the "airplane" exists. The SFG decomposition of the

description (Fig. 5.2) confirms that such a path exists:

"water" → "supercooled water droplets collide with a surface" → "if supercooled water

droplets collide with a surface they may result in blocked fuel inlet pipes" → "blocked fuel

inlet pipes" → "aviation fuel designed for use in aircraft powered by gas turbine engines" →
"engine".

It also shows that the path is relevant from a risk interaction perspective, i.e., “water”
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Figure 5.1: ATF fuel description

Figure 5.2: ATF fuel SFG decomposition

- “collide” - “with a surface,” which means that both water and surface affect each other.

There is a similar relationship between “droplets” and “surface”. In the second element,

the relationship between “droplets” - “results” - “pipes” is also a “effect type” relationship

between “droplets” and “pipe”. The “blocked fuel inlet pipes” are connected to the last

frame, where it is possible to identify a relationship between “engine” - “use” - “fuel”. By

reading the entire path, it is also possible to confirm that, in terms of consistency and

general operational safety, the “droplet” (Hazard) affects the “engine” (Asset) through “fuel”

(Vulnerability).

e The template used to detect the risk flow in the system will use the "has an effect on"

pattern. Such a relation meets the requirement for risk-related relations as it is irreflexive

(as the system can hardly affect itself) and transitive as "effect flows" through the system.

The effect flow is antisymmetric, as the direction of the flow must be supported explicitly
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Figure 5.3: Distribution of relations per detection function assigned to a metapath

Figure 5.4: Distribution of valid relations per detection function assigned to a metapath

by the relation context.

All specified metapaths perform the SFG graph (fig. 5.3):

• isRTE: indicate that metapath 1 and metapath 2 and these are intra-frame cases,

• isDialogRTE: indicate metapth 3a and 3b, which are inter-frame cases,

• isDialogRTE2: indicate metapaht4, a subordinate clause decomposition case.

The relation verbalization statistics shows that most of the relations evaluated were

isRTE (over 50%), meaning they were identified within a single frame. However, dialog-

based strategies denoted as isDialogRTE for two adjacent frames and isDialogRTE2 for

subordinate clause decomposition, together add a significant part of them (Fig. 5.3). In

many cases, they are irrelevant as their dialog coherence score is low (Fig. 5.5), but not

considering them at all would deteriorate the risk model as they are a significant part of

confirmed relations (Fig. 5.4). A multicriterial optimization performed for chatGPT 3.5

LLM (Eq. 4.3) establishes the threshold wth = .18, and relations accepted will have dialog

80



5 . 1 . K N O W L E D G E A C Q U I S I T I O N P I P E L I N E

Figure 5.5: Sample of relations detected for the ’airplane’

Figure 5.6: Examples of classification decisions

scores above it (Fig. 5.7). It is worth noting that the prompted chatGPT 3.5 itself does not

provide perfect decisions, and solely relying on the LLM’s Yes/No answer will not produce a

trustworthy risk model.

Incremental Knowledge Acquisition Pipeline

The synthetic example can be expanded with additional contextual information. This

simulates a scenario when the risk model is created gradually once new descriptions are

Figure 5.7: The distributions of chatGPT prompted decision together with the threshold (red vertical

line) (left). Empirical cumulative distribution of relations wrt dialog function score (right)
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Figure 5.8: The IRG for the synthetic example

Figure 5.9: The A-V-H graph for the synthetic example.Blue nodes: Assets, Orange: Vulnerabilities,

Red: Risks
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available. A new SFG graph is constructed for a new description (Fig. 5.11). The IRG graph

is augmented with incoming new relations. Eventually, the A-V-H graph will be updated

with new interactions.

Figure 5.10: Additional contextual information for the synthetic examples

Figure 5.11: SFG decomposition of additional synthetic context

The augmented A-V-H graph shows that fuel Vulnerability becomes a hub that connects

with eight risks in the context of the airplane Asset.

Figure 5.12: Augmented IRG Graph for the synthetic example. New connections are highlighted.
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Figure 5.13: Augmented A-V-H Graph indicating new Risks: "temperature" and "altitude"

Adding additional contextual information enriches the A-H-V graph further. For exam-

ple, adding elements directly impacted by fuel, like the APU, air conditioning, electricity,

navigation instruments, and others, is possible. The centrality analysis of Vulnerability

nodes can help identify areas requiring specific precautions given connected risks [1].

5.2 Intra-Sentence Relation Detection

Although no available resources could be used to evaluate the proposed detection

quality in document-level scenarios in the risk domain, at least one targets a similar scenario

for a general case. DocRED is a large human-annotated dataset based on Wikipedia and

WikiData. It is annotated for entity types and relations between them [49]. The entity types

are essential factors in improving relationship detection. For example, a relation such as "is

located in" would be possible between CORPORATION and LOCATION entities rather than

PERSON and LOCATION [57]. The annotation provides examples of the relation between

the entities and the sentences supporting it. Each test case is provided with its specific multi-

sentence passage, for example, Zest Airplines description for (Fig. 5.14) and annotation (Fig.

5.15).
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Figure 5.14: DocRED multi-sentence narrative example: Zest Airlines. [49]

Figure 5.15: DocRED multi-sentence annotation example: Zest Airlines. [49]

DocRED specifies 96 relations, but not all meet the risk-specific irreflexive, antisym-

metric, and transitive criteria, for example, relation: ’P54’ - ’is member of sports team’.

However, DocRED contains some that meet them, such as location-specific relations. They

are irreflexive, transitive (e.g., Ninoy Airport is located in Manila, Manila is located in the

Philippines, then Ninoy Airport is located in the Philippines), and antisymmetric (Manila is

located in the Philippines, but the Philippines is not located in Manila). Therefore, they can

be used as a proxy for risk-type relations. The satisfactory performance of the proposed so-

lution in location-specific relation detection will indicate the general quality of risk-related

scenarios.

The results achieved for a sample (Fig. 5.14 are presented. The location hierarchy, with
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the Philippines being the top level with no outgoing edges (Fig. 5.16), suggests that the

chain of location relations is preserved. Although compound nouns such as "Ninoy Aquino

International Airport" are split into individual nouns: "ninoy", "aquino" and "airport" each

of them is connected with its location individually e.g. "passay" - "manila" and "passay" -

"philippine" as indicated in the training set. However, "manila" relations (Fig 5.17), suggest

that there are additional elements detected.

Detection performance is evaluated as follows. The number of possible relations N =
1406 is the number of pairs of nouns: head and tail entities connected in the SFG graph and,

therefore, have a path between them in the IRG. The total number of detected relations

(106) are those whose score is above the calculated threshold. The total number of true

positive (T P ) relations is the number of pairs confirmed by the training set. The number of

false positive (F P ) relations is the difference between the number of relations detected and

the true positive (T P ) number. The number of false negative (F N ) relations is the number

of training set examples below the acceptance threshold. The number of true negative (T N )

relations is the difference between total N and true positive (T P ).

Detection performance is calculated through a confusion matrix (Tab. 5.1) and standard

metrics are as follows:

• Accuracy:

T P +T N

T P +T N +F P +F N
≈ 0.94

• Precision:

T P

T P +F P
≈ 0.21

• Recall:

T P

T P +F N
= 1

• Specificity:

T N

T N +F P
≈ 0.98

• F1:

2∗Pr eci si on ∗Recal l

Pr eci si on +Recal l
≈ 0.34
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Figure 5.16: Zest Airways "is located at" results: Philippines (philippine) focus

Figure 5.17: Zest Airways "is located at" results: Manila focus

Predicted

True False

Actual
Positive 23 83

Negative 1383 0

Table 5.1: Zest Airways, "is located at" confusion matrix
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Figure 5.18: Zest Airways Detection Summary

Summary

Although the validation has been performed on a single example (out of over 1200) in

the DocRED dataset, the proposed method’s capabilities can still be concluded.

The benchmark performance is evaluated for weakly supervised scenarios (Fig. 5.19).

The weekly supervised scenario is a closer, but not the same, approach as the one proposed.

This scenario provides additional training data containing the entities and expressing their

exact relations. For example, "Ninoy Airport is located in Manila" would be extended with

sentences such as "Ninoy Airport is the main airport in Manila". This approach resembles,

but very roughly, semantic templates. Although it is impossible to compare the result

directly, the Ign F1 score is at the same level as the F1 score for the proposed method.

Figure 5.19: DocRED results. Ign F1 is calculated for dev/test datasets with removed duplicates [49]

The proposed solution is low-precision. It results from validating all relationship candi-

dates available in the sample description, not just those defined in the training set. From a

risk analysis perspective, reviewing all possible candidate entities is mandatory to identify

a complete hazard flow. In contrast, the validation approach in DocRED assumes models

are validated using examples in the dedicated validation set only. The DocRED precision

scores are higher as they are calculated based on selected (fewer) cases vs. all possible pairs
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in the solution proposed.

The proposed solution implicitly considers the "no relation" case, another reason for

low precision. "No relation" means that the entailment score is below the threshold and

there is no link between the entities in the IRG. The DocRED dataset completely misses this

case. As, in fact, "no relation" is a dominant relation, adding it would skew data distribution

and severely impact the benchmark DocRED models’ performance. Again, from a risk-

analysis perspective, it is mandatory to explicitly review all candidate relations and assign

"no relation" if there is not enough evidence supporting it.

5.3 EMARS Report Example

The Major Accident Reporting System 1 (MARS and later renamed eMARS after going

online) was first established by the EU’s Seveso Directive 82/501/EEC in 1982 and has

remained in place with subsequent revision to the Seveso Directive in effect today. eMARS

contains reports of chemical accidents and near misses provided to the Major Accident

Hazards Bureau (MAHB) of the European Commission’s Joint Research Centre (JRC) from

EU, EEA, OECD, and UNECE countries (under the TEIA Convention). Reporting an event

into eMARS is compulsory for EU Member States when a Seveso establishment is involved,

and the event meets the “major accident” criteria defined by Annex VI of the Seveso III

Directive (201218/EU). The repository’s goal is to facilitate the exchange of lessons learned

from accidents and near misses involving dangerous substances to improve chemical

accident prevention and mitigation of potential consequences.

The recorded reports are free-text descriptions of the events, unsuitable for compre-

hensive analysis without transformation to a network representation of hazard flow in the

system domain. The proposed solution can extract the AVH triples from the description

and transform the description of the event into the A-V-H graph.

Consider the example of ammonia leak (Fig. 5.20) which was provides with the following

information:

• Accident description

Release of ammonia, which intoxicated 11 persons (8 employees, of which 2 were

intoxicated (injured) seriously and 3 fire-fighters). The release occurred due to a valve

opened in error. The release occurred in an installation for the dilution of anhydrous

ammonia into a 10% ammonia solution employed in order to limit (reduce) the

1https://emars.jrc.ec.europa.eu/en/emars/content
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corrosion during the distillation of petrol (crude oil). This release occurred on one (or

two ) 1/4 turn valves isolating the dissolving column from a tank of 7 cubic metres

(m3) of capacity (containing 3,8 tonnes of liquefied ammonia under 8 bars of pressure

at the time of the accident).

• Installation description

(anhydrous) ammonia dissolving (dilution) column employed to prepare the (10%)

ammonia (solution) employed for its corrosion inhibiting characteristics during the

(crude) oil refining process. The release occurred in correspondence of two flanges

which were being made loose.

• Causes description

Probably the bad ergonomics of the place: during the unscrewing (loosening) of the

bolts fixing the flanges, in a very cramped (small) space, one of the operators (workers)

may have untimely (wrongly) opened one of the 1/4 turn valves isolating the unit

(equipment) under maintenance from the units located upstream and containing

the ammonia.

• Consequences Description

3,8 tonnes of ammonia were released during 5 and a half hours (5,5 hours, 5,5h).

The cloud stays (is confined) inside the establishment. 11 persons are affected or

intoxicated (8 employees of which 2 were intoxicated (injured) seriously and 3 fire-

fighters).

• Emergency Response

Use of water and specifically for water curtains in order to abate the pollution (pollut-

ing substances - ammonia).

Figure 5.20: eMars example: Release of ammonia from an erroneously opened valve

Processing

All textual fields were altered for proper sentence formulation, i.e., repeated verbs were

removed ("injured" as there is a verb "intoxicated"), and missing dots were added for correct

sentence separation. All text was transformed into the SFG graph. The semantic pattern
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"has a direct effect on" used was only. The cutoff threshold was 0.684703278413859. The

relations above the threshold were loaded into the IRG graph and then aggregated into

A-V-H.

Results

The event description contains a significant number of candidate relations (Tab. 5.2).

However, 74% of them are irrelevant from a risk propagation perspective. Those accepted

were loaded in the IRG where the PageRank measure [87] is calculated their "importance" in

the overall semantic model of risk propagation (Tab. 5.3). The score is calculated regardless

of the nodes’ roles: (Asset, Vulnerability or Hazard). The high PageRank score of "ergonomic"

seems correct, as the accident described resulted from a maintenance mistake due to a small

space. The "ergonomic" node links with events, actors, and elements associated with the

accident, such as "unscrewing," "operator," "turn," and "valve" (Fig. 5.21). The propagation

of impact from these elements seems reasonable by reading the cause description.

The degree centrality of risk and vulnerability nodes (Tab 5.4) provides additional

insides. In the A-V-H graph, "flange" (pol. kołnierz) is one of the most central Risks as it

impacts indirectly 21 Assets through 15 Vulnerabilities. It is an essential Vulnerability as

well (Fig. 5.22) as it connects and transmits the impact of other elements in the description.

Such impact is confirmed by analysis of the "reasoning path" (Fig. 5.23). The path shows

that it aggregates the impact of the following elements: the "valve" that is a part of the

"equipment" isolating the ammonia. Then to the "operator" that was maintaining the

"equipment". The "operator" was working in the "place" and making "turns" on the bolts

in questionable "ergonomic" conditions, which eventually led to "flange" loosening that

resulted in the "release".

The precision of the detection, however, is low, which means some relations accepted

do not express a direct impact, and inspection of the "reasoning path" is required to confirm

them. For example, "ammonia" is not a Risk for "ergonomic" (Fig. 5.24). The "reasoning

path" does not confirm it, although the entailment score is above the threshold (Fig. 5.25).

Statistics #

total number of candidate relations 1894

total number of accepted relations 483

Table 5.2: EMars report candidate and accepted relations counts
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node pagerank

valve 0.890

ergonomic 0.0850

release 0.0718

place 0.0691

equipment 0.0631

corrosion 0.0627

characteristic 0.0597

ammonia 0.0522

turn 0.0382

space .0369

flange 0.0345

Table 5.3: The top IRG nodes given the pagerank

Figure 5.21: eMars example. The neighborhood of "ergonomic" node in the IRG graph
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Figure 5.22: eMars example. The "flange" Vulnerability (Yellow node) in the A-V-H graph. The Asset

nodes are blue and Risk nodes red
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Figure 5.23: eMars example. The path explaining "flange"’s impact on ammonia "release"
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Figure 5.24: eMars example. "Ammonia"’s excessive Vulnerability. Blue nodes - Assets, Yellow -

Vulnerabilities, red - Risks

Figure 5.25: eMars example. "Ammonia"->"ergonomic" reasoning path
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Vulnerability Risk

unit capacity

ergonomic tank

place dilution

valve flange

ammonia correspondence

equipment accident

unit order

oil column

petrol ergonomic

solution operator

Table 5.4: Top Vulnerability and Risk nodes sorted by their centrality measures in the A-V-H network

Summary

Given the accident description, the proposed solution correctly identified key elements,

events, and actors in the infrastructure. The central element is the "valve" (Tab. 5.3), which

is the main reason for the accident. The next two, "ergonomic" and "release", are corre-

lated with it. The network risk model - the A-V-H graph combines all the elements of the

description together. It represents the individual impact of all the elements on each other. It

is possible to apply graph algorithms to focus the analysis on the elements with the highest

impact and perform a more detailed analysis, such as one for "flange".

The "ammonia" example confirms the DocRED results as the precision of the detection

is low. Low precision, however, can be attributed to the efficacy of the BART NLI classifier

[82], its training set, and the efficacy of LLMs used to validate the results. As mentioned

in the "Relevant NLP Processing Techniques," general NLI classifiers are trained using

general NLI training sets, which may not cover the linguistic peculiarities of the specialized

domain. On the other hand, performance of LLMs can be augmented by, for example,

targeted examples that would improve prompting. Further work on precision improvement

is required.
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5.4 Impact of Large Langauge Models

As the introduction mentions, a few LLMs are explicitly trained in a dedicated domain,

e.g., medical or legal. Unfortunately, the risk analysis domain does not have enough textual

resources to perform such comprehensive training. On the other hand, LLMs e.q.: FLAN

[60], [86], GPT3 [13] or Mistral [88] have achieved remarkable success lately establishing new

reference results in a variety of general NLP tasks i.e. MMLU 1. LLMs have achieved such

results following the latest in-context learning approaches such as instruction-tuning [60],

chain-of-thoughts [89], or self-consistency [90]. The performance of the LLM is achieved

because of good quality textual resources such as Wikipedia and thousands of books used

in their training. However, there are differences in their training, which impacts their appli-

cability to a specific language task, such as recognizing textual entailment.

The LLM is used to evaluate the entailment score threshold cutoff. The multiobjective

optimization approach selects the cutoff for the entailment score so that the distance

between the ratios of rejected and accepted relations is the largest. Therefore, it will select

the point on the weight axis for which the distance between empirical distributions (ECDF)

of rejected (blue curves) and accepted relations (orange curves) are as far as possible (Figs.

5.30, 5.32, 5.34). The statistics suggests that the vanilla models’ performance (promoted in

a general way, not specifically for the task) varies significantly. Therefore, a valid question

arises: Which one should be chosen, and how does LLM performance relate to the RTE

classification performed by the other classifier?

The experiment setup was as follows. The narrative described the Teton Dam collapse

in 1975 (Fig. 5.29). The text was decomposed to the SFG representation. A single relation

template "has a direct impact on" was used, and metapaths 1 and 2 were executed only to

remove the effect of dialog consistency. The statistics (aggregated counts and empirical

distribution) as a function of template entailment score - denoted as weight- were collected

for LLMs (FLAN, LLAMA, Mistral) available on huggingface.com. Each model was prompted

according to its interface with precisely the same prompt as others.

Together with the ECDFs, the distributions of LLM’s Yes / No decisions are plotted

against the entailment score for each model (Figs. 5.31, 5.33, 5.34, 5.36. The cutoff threshold

for each model is provided in Fig. (5.37). It is impossible to assume that the threshold with

a higher value is better. Therefore, the model selection has to rely on its performance for

the task, not the threshold value itself.

1https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
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The sample is large enough, and the collected statistics allow drawing the following

assumption:

• the overall distribution of the number of relations per weight is exponential (Fig. 5.26)

• Most LLMS rejections shall be in low-scoring areas as most frames connecting nouns

will not verbalize the relation template.

• the LLMS should agree in general with the RTE classifier therefore, the acceptance

probability should be correlated with the weight and increase with it.(Fig. 5.27). In

the perfect scenario, all rejected relations shall be close to 0 and accepted close to 1.

Therefore, the rudimentary criterion for selecting the performing model would be the

difference d between the mean value of the score for acceptance and the mean value for

rejection. Let w 0 denote the entitlement score (weight) associated with the LLM’s rejection

of the relations and w 1 the acceptance, then the distance

d = E [w 1]−E [w 0]

will denote the quality of LLMs decisions:

• if d>0, the LLM correlates with the RTE and properly discerns the rejections and

acceptances. Solving the optimization task (Eq. 4.3) will establish the threshold,

• if d=0, the LLM is independent of RTE and cannot be used to estimate the threshold

(Fig. 5.28),

• if d<0, the LLM is negatively correlated to the RTE and cannot be used to estimate the

threshold.

The comparison of differences between the means for the models analyzed (Fig. 5.38)

suggests using the mistral-v0.1 model. The acceptance threshold for this model has been

calculated and is 0.273 (Fig. 5.37)
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Figure 5.26: Histogram of relations given entitlement score (weight) for the exemplary narrative (Fig.

5.29)

Figure 5.27: Ideal histogram of exponential distribution of the number of relations given entailment

score (weight) where class assignment correlates with entitlement score (weight)
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Figure 5.28: Synthetic empirical distribution (left) and histogram (right) of the case where LLM

classification is uncorrelated with the entailment score

100



5 . 4 . I M P A C T O F L A R G E L A N G A U G E M O D E L S

Figure 5.29: Teton Dame Collapse Description
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Figure 5.30: Emprical Distribution (ECDF) of LLama models per entailment score

Figure 5.31: Histograms of model’s decisions on the relation per entailment score

Figure 5.32: Emprical Distribution (ECDF) of Mistral and chatGPT models per entailment score
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Figure 5.33: Histograms of model’s decisions on the relation per entailment score

Figure 5.34: Histograms of model’s decisions on the relation per entailment score

Figure 5.35: Emprical Distribution (ECDF) of FLAN models per entailment score
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Figure 5.36: Histograms of model’s decisions on the relation per entailment score

Figure 5.37: The cutoff thresholds for each LLMs

Figure 5.38: Calculated distances between expected values for accepted and rejected relations per

LLM

Summary

Surprisingly, models did not respond to the prompt consistently. For example, FLAN

LLM showed a behavior in which models largest in terms of parameters (large and XXL) (Fig.

5.35) did not respond to the prompt at all, accepting the relations. This rudimentary analysis
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shows differences between the models in how they encode the linguistic phenomena and,

to some extent, explains the low precision of the overall detection quality. The discrepancies

are not just between the models, which their training strategy can explain, but what is more

surprising is that most of them do not show a correlation between the basic entailment score.

For example, LLama models accept the majority of relations in the low entailment value

regions (Fig. 5.30). For the future, vanilla prompting shall be more specific, and examples of

entailment correlated with the domain shall be provided. Large Language Models need to

be specifically verified for their applicability to the domain language.

5.5 Additional Examples

In other areas, non-linear systems exist, and it is essential to detect hazard propagation

based on their description. In the financial scenario, for example, it is possible to model

the impact of decisions given the economic phenomena they induce, i.e., inflation. Such

an impact is challenging to predict due to the level of complexity of the market in terms of

the interaction of dependent participants such as government, companies, and customers.

Moreover, their connections are tight; therefore, the economic system fulfills the non-linear

system definition. The effect propagates across all the participants, often with excessive

feedback, which, if uncontrolled, can lead to critical phenomena such as hyperinflation or

significant supply disruptions.

Another area that could benefit from the proposed methodology is drug development.

The complexity of the human body is unquestionable. One identified challenge is prevent-

ing adverse drug effects, which aims to "predict the efficacy and toxicity of potential drug

compounds" [91]. The proposed solution, relying on the description of the drug’s mecha-

nism of action under development, can help identify areas requiring special "attention" in

clinical trials.

5.5.1 Financial Scenario

In this scenario, the description of price increase, i.e., inflation, is analyzed for potential

impact on other market participants. The flow of inflation impact resembles the hazard

propagation. The generated narrative (Fig. 5.39) describes the context surrounding the

effect of inflation on the economy. Given the provided description, it is possible to explore

the impact, such as the one presented for "inflation" for its closest neighbors (Fig. 5.40).

The A-V-H graph aggregates the overall impact (Fig. 5.41), which can be used to further
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Figure 5.39: Financial Example: Description of inflation

select elements of interest and inspect, for example, the "reasoning paths" (Figs. 5.42) 5.43).

5.5.2 Medical Scenario

In the medical scenario, it is important to identify an indirect impact of the drug on

organs or functions that do not participate in the drug’s mechanism of action. The sample

text describes the role of the liver in the human body (Fig. 5.44). Assuming therapy impacts

the liver directly, the goal is to identify potentially impacted elements or processes of the

human body.

In this scenario, three relationship templates were used: "has effect on", "is a type of",

"is a part of" and "is used by" (Fig. 5.45), the A-V-H graph aggregates the effect propagation

into the combined network identifying the AVH triple (Fig. 5.46). The effect of the drug will

be associated with "liver" in the Vulnerability role. The drug will impact the Assets, which

are processes or organs associated with the "liver," i.e., "fibrinogen". To confirm the impact,

the complete path should be evaluated. The path contains frames, the type of relation, and

the entailment score (Fig. 5.47)
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Figure 5.40: Financial Scenario: the "inflation" neighborhood in the IRG.

Figure 5.41: Financial Scenario: the A-V-H graph for "inflation" as Vulnerability of "business" As-

set,Blue nodes - Assets, Yellow - Vulnerabilities, red - Risks

Figure 5.42: Financial Scenario: "government" impact on "inflation"
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Figure 5.43: Financial Scenario: "money" impact on "business"

Figure 5.44: Medical Example: description of the role of a liver
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Figure 5.45: Liver example: the IRG graph

Figure 5.46: Liver example: the A-V-H graph. Blue nodes - Assets, Yellow - Vulnerabilities, red - Risks

Figure 5.47: Liver example: reasoning path for "liver" impact on "fibrinogen"
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5.6 Summary

This chapter presented the solution’s efficacy, focusing on analyzing and interpreting

the use cases in alignment with the research objectives. It examined the exemplary narra-

tives, highlighting relationship detection and anomalies observed during the analysis. The

solution’s functionality in risk analysis and applicability in modeling the flow of hazards in

other domains have also been presented.

The quantitative analysis revealed several key issues with the approach that must be

addressed. First, the low precision of risk-relationship detection is related to the efficacy of

transformed-based classifiers and the current capabilities of large language models. Second,

LLM prompting must be aligned with the domain to achieve "accept" and "reject" signals

correlated with the entailment score for the threshold optimization task.

110



Chapter 6

Conclusions

The method described has demonstrated the following characteristics. First, it detects

intra-sentence relations without training sets through a dialog consistency and verbalizing

relationship pattern. Second, it shows that defining transitive relations applies to the risk

analysis domain, as it is possible to construct the A-V-H, which is a risk-specific interaction

graph. Third, we show that in the absence of training sets, a prompt-based classification

using a language model can be used to provide a validation method. The proposed solution

addresses the contextual entity classification problem and can be used to construct a

comprehensive risk representation incrementally once new narratives are available.

Although there is a breadth of work on how current language models encode "knowl-

edge" and how they can be used to extract it directly or validate the engineered hypothesis,

limitations still hinder their direct applicability in various areas, including risk analysis.

Hallucinations pose the most significant difficulty in their practical application. It seems

that the relationship detection and classification task, quoted in this thesis as the relation

verbalization, although being the most straightforward use case as it requires only properly

defined prompt [48], [92] does not provide decisions as there are accepted relations that are

significantly below the acceptance threshold. It seems reasonable to construct an ensemble

of classifiers with prompted LLMs. Another limitation that pertains to LLMs’ applicability is

their context window fixed size. In in-context few-shot training, the context window would

provide system descriptions. Therefore, descriptions that do not fit in must be split, result-

ing in possible lost relations. In addition, it is unclear how expanding the context window

impacts the detection performance. It is also unclear how prompts would be constructed

to solve the contextual representation classification (Risk-Asset-Vulnerability Dilemma). It

seems that some sort of intermediate graph representation of text, similar to the SFG graph,

which provides a method to limit the context (to a path of defined length) together with a

specific graph traversing strategy, like metapaths, can help to fuse distant text fragments

which would not fit into context if a description is provided directly. It seems that the pro-

posed solution, to some extent, addresses the LLMs limitations mentioned and correctly

uses LLMs as a validation instead of the main relationship classification or detection tool.
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I want to continue research in the following directions. First, it is important to improve

the precision of the detection. Second, I would like to focus on the capabilities of the SFG

graph to check if it is possible to include more risk-oriented text operations. For example,

to augment coreference resolution beyond simple preposition-noun or similar noun substi-

tution, perform contextual substitution for the attributes of frames expressing the same

event. For example, the sentences "Electricity cutoff disables all electronic devices. In such

situations, emergency UPSs provide backup power supply.", situation refers to electricity

cutoff. In the SFG graph, these sentences are unconnected as no nouns are in common.

Therefore, either a specific connection or a complete replacement of situation with electric-

ity cutoff should be performed to reduce the graph distance between electronic devices and

emergency UPS.

Second, I would like to explore if it is possible to construct graphical representations

of risk interaction other than A-V-H. I believe it is possible to model Event-Tree-Analysis

by adding a dedicated set of templates. Combining them to detect how events co-occur

and how the propagation of multiple hazards interacts in the system, we could create Fault-

Tree-Analysis models [5]. Additionally, it might be interesting to verify if path algebra [93]

can be applied to risk analysis.
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Appendix

.1 Computation Complexities Calculatation

.1.1 Naive Relation Validation

Each context c has k nouns on average. In the worst-case scenario, to validate the

semantic relation between any pair of nouns in the document, we have to visit all contexts

and all nouns in them. The validation is performed as follows:

1. we have to find a noun in one of the c contexts. In the worst-case scenario, we must

scan c contexts and k nouns in each to find the noun of interest.

2. within the first context, we have to validate the relationship between the noun of

interest and the remaining k-1 nouns,

3. then we need to find a connection between the current and next contexts. Therefore,

we must scan the remaining c-1 context for shared nouns to make a connection. In

the worst-case scenario, there are c-1 contexts left and for each, we need to scan k

nouns

4. within the following context, we need to evaluate the relationship between the con-

necting noun and the remaining k-1 nouns

5. we repeat the context evaluation until the last context.

The formula estimating the number of comparisons depends on the number of contexts

Figure 1: Naive Validation: Each context has k nouns on average; there are context in total in the

narrative
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. 1 . C O M P U T A T I O N C O M P L E X I T I E S C A L C U L A T A T I O N

and average number of nouns:

f (k,c) = c ∗k ∗ (k −1)∗ (c −1)∗k ∗ (k −1)∗ (c −2)∗k ∗k(1)∗ ...(c − c −1)∗k ∗ (k −1)

f (k,c) = c !kc (k −1)c
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